Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1988 Jul;401:581–595. doi: 10.1113/jphysiol.1988.sp017181

Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres.

M A Bagni 1, G Cecchi 1, F Colomo 1, C Tesi 1
PMCID: PMC1191868  PMID: 3262740

Abstract

1. The relation between sarcomere length and tetanic tension was determined at 10-12 degrees C for 70-80 microns long segments of single fibres isolated from the tibialis anterior and semitendinosus muscles of the frog. Measurements of segment striation spacings were performed during fixed-end or length-clamp contractions by means of a laser light diffractometer. 2. At sarcomere lengths of around 2.10 microns tetanic tension rose promptly to a steady plateau, independent of the recording conditions. At greater sarcomere lengths under fixed-end conditions the tension rise occurred in two distinct stages: an initial rapid rise followed by a much slower creep. The tension creep was entirely abolished in length-clamp contractions. 3. The sarcomere length-tension diagram of length-clamped segments of tibialis anterior fibres exhibited a definite flat region between about 1.96 and 2.16 microns where tension varied by less than 1.5%. The highly linear descending limb reached zero tension at about 3.53 microns. The shift to the left by about 0.10 microns, with respect to the length-tension diagram of length-clamped segments of semitendinosus fibres, may be tentatively explained by assuming that thin filament lengths vary in different muscles. 4. The results are in agreement with those of a previous work by Gordon, Huxley & Julian (1966) and support the hypothesis (Huxley, 1957, 1980) that muscle tension is produced by simultaneous action of independent force generators, in proportion to the number of myosin bridges overlapped by actin filaments.

Full text

PDF
581

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altringham J. D., Bottinelli R. The descending limb of the sarcomere length-force relation in single muscle fibres of the frog. J Muscle Res Cell Motil. 1985 Oct;6(5):585–600. doi: 10.1007/BF00711916. [DOI] [PubMed] [Google Scholar]
  2. Cecchi G. A circuit specially suited for use with high-frequency capacitance gauge force transducers. Arch Ital Biol. 1983 Aug;121(3):215–217. [PubMed] [Google Scholar]
  3. Cecchi G., Colomo F., Lombardi V. A loudspeaker servo system for determination of mechanical characteristics of isolated muscle fibres. Boll Soc Ital Biol Sper. 1976 May 30;52(10):733–736. [PubMed] [Google Scholar]
  4. Craig R., Offer G. Axial arrangement of crossbridges in thick filaments of vertebrate skeletal muscle. J Mol Biol. 1976 Apr 5;102(2):325–332. doi: 10.1016/s0022-2836(76)80057-5. [DOI] [PubMed] [Google Scholar]
  5. Edman K. A., Mulieri L. A., Scubon-Mulieri B. Non-hyperbolic force-velocity relationship in single muscle fibres. Acta Physiol Scand. 1976 Oct;98(2):143–156. doi: 10.1111/j.1748-1716.1976.tb00234.x. [DOI] [PubMed] [Google Scholar]
  6. Edman K. A., Reggiani C. Absence of plateau of the sarcomere length-tension relation in frog muscle fibres. Acta Physiol Scand. 1984 Oct;122(2):213–216. doi: 10.1111/j.1748-1716.1984.tb07502.x. [DOI] [PubMed] [Google Scholar]
  7. Edman K. A., Reggiani C. The sarcomere length-tension relation determined in short segments of intact muscle fibres of the frog. J Physiol. 1987 Apr;385:709–732. doi: 10.1113/jphysiol.1987.sp016516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ford L. E., Huxley A. F., Simmons R. M. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol. 1977 Jul;269(2):441–515. doi: 10.1113/jphysiol.1977.sp011911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon A. M., Huxley A. F., Julian F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966 May;184(1):170–192. doi: 10.1113/jphysiol.1966.sp007909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HUXLEY A. F. Muscle structure and theories of contraction. Prog Biophys Biophys Chem. 1957;7:255–318. [PubMed] [Google Scholar]
  11. HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Julian F. J., Sollins M. R., Moss R. L. Sarcomere length non-uniformity in relation to tetanic responses of stretched skeletal muscle fibres. Proc R Soc Lond B Biol Sci. 1978 Jan 24;200(1138):109–116. doi: 10.1098/rspb.1978.0009. [DOI] [PubMed] [Google Scholar]
  13. Lieber R. L., Yeh Y., Baskin R. J. Sarcomere length determination using laser diffraction. Effect of beam and fiber diameter. Biophys J. 1984 May;45(5):1007–1016. doi: 10.1016/S0006-3495(84)84246-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PAGE S. G., HUXLEY H. E. FILAMENT LENGTHS IN STRIATED MUSCLE. J Cell Biol. 1963 Nov;19:369–390. doi: 10.1083/jcb.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Page S. G. Fine structure of tortoise skeletal muscle. J Physiol. 1968 Aug;197(3):709–715. doi: 10.1113/jphysiol.1968.sp008583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zite-Ferenczy F., Rüdel R. A diffractometer using a lateral effect photodiode for the rapid determination of sarcomere length changes in cross-striated muscle. Pflugers Arch. 1978 Apr 25;374(1):97–100. doi: 10.1007/BF00585702. [DOI] [PubMed] [Google Scholar]
  17. ter Keurs H. E., Iwazumi T., Pollack G. H. The sarcomere length-tension relation in skeletal muscle. J Gen Physiol. 1978 Oct;72(4):565–592. doi: 10.1085/jgp.72.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES