Abstract
1. 5-Hydroxytryptamine (5-HT, 10(-9)-10(-4) M) depolarized and contracted smooth muscle cells (resting potential: -69.1 +/- 0.9 mV, n = 112) in isolated cylindrical segments of the rabbit basilar artery. 2. Simultaneous measurement of membrane potential and wall tension (n = 43, thirteen vessels) showed that the onset of 5-HT-induced depolarization coincided with the onset of smooth muscle contraction in the majority of cells studied. In addition, the onset of relaxation which followed the wash-out of 5-HT always preceded the onset of membrane repolarization by 52 +/- 8 s (n = 14). 3. In 30% of smooth muscle cells exposed to concentrations of 5-HT greater than 10(-6) M, fast rhythmic depolarizations (amplitude 10-20 mV) were superimposed on the developing depolarization. Rhythmic membrane depolarization was always followed by rhythmic smooth muscle contraction, which peaked 2-4 s after the peak of the fast depolarization. 4. Muscle contraction, but not depolarization, produced with concentrations of 5-HT greater than 10(-7) M, was significantly increased by the removal of intimal-endothelial cells. 5. Smooth muscle depolarization recorded in the presence of increased extracellular K+ (greater than 5.2 mM) preceded the onset of smooth muscle contraction. For a similar change in membrane potential produced with either increased extracellular K+ or 5-HT, the corresponding increase in arterial wall tension was always greater with 5-HT. 6. The depolarization and contraction induced by 5-HT was markedly reduced or abolished if extracellular Na+ was totally replaced, isosmotically, with either sucrose or Tris at pH 7.4. Normal-sized contraction, but not depolarization, was recorded with 5-HT in Na+-free Tris solution at pH 8. 7. These observations suggest that 5-HT-stimulated contraction in cerebrovascular smooth muscle is largely a result of mechanisms other than depolarization of the smooth muscle cell membrane which it produces. However, high concentrations of 5-HT (greater than 10(-6) M) can stimulate additional depolarization, which has a faster time course and rhythmic nature. Discrete depolarizations of this type are responsible for initiating additional, phasic smooth muscle contractions.
Full text
PDF![333](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/89248474483e/jphysiol00522-0337.png)
![334](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/4cff22ab9e43/jphysiol00522-0338.png)
![335](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/ec860498b07a/jphysiol00522-0339.png)
![336](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/80e784af660f/jphysiol00522-0340.png)
![337](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/42cf99d0bf0b/jphysiol00522-0341.png)
![338](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/48090fc2a126/jphysiol00522-0342.png)
![339](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/dfefda2c948d/jphysiol00522-0343.png)
![340](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/7aa8cf3d9a8a/jphysiol00522-0344.png)
![341](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/c200dec5ef38/jphysiol00522-0345.png)
![342](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/492bf9c1d461/jphysiol00522-0346.png)
![343](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/3dcd1afae9d4/jphysiol00522-0347.png)
![344](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/355b3cad701c/jphysiol00522-0348.png)
![345](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/74a297bed199/jphysiol00522-0349.png)
![346](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/aa2477b858d8/jphysiol00522-0350.png)
![347](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/cc95bccab0a8/jphysiol00522-0351.png)
![348](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0175/1192307/c45e0b1353bf/jphysiol00522-0352.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aickin C. C., Thomas R. C. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J Physiol. 1977 Dec;273(1):295–316. doi: 10.1113/jphysiol.1977.sp012095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakhle Y. S., Vane J. R. Pharmacokinetic function of the pulmonary circulation. Physiol Rev. 1974 Oct;54(4):1007–1045. doi: 10.1152/physrev.1974.54.4.1007. [DOI] [PubMed] [Google Scholar]
- Bolton T. B. Calcium metabolism in vascular smooth muscle. Br Med Bull. 1986 Oct;42(4):421–429. doi: 10.1093/oxfordjournals.bmb.a072161. [DOI] [PubMed] [Google Scholar]
- Bolton T. B., Lang R. J., Takewaki T. Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol. 1984 Jun;351:549–572. doi: 10.1113/jphysiol.1984.sp015262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman A., Drummond A. H. Cyclic GMP mediates neurogenic relaxation in the bovine retractor penis muscle. Br J Pharmacol. 1984 Apr;81(4):665–674. doi: 10.1111/j.1476-5381.1984.tb16133.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casteels R., Kitamura K., Kuriyama H., Suzuki H. Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J Physiol. 1977 Sep;271(1):63–79. doi: 10.1113/jphysiol.1977.sp011990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung D. W. An electrophysiological study of alpha-adrenoceptor mediated excitation-contraction coupling in the smooth muscle cells of the rat saphenous vein. Br J Pharmacol. 1985 Jan;84(1):265–271. [PMC free article] [PubMed] [Google Scholar]
- Coburn R. F., Yamaguchi T. Membrane potential-dependent and-independent tension in the canine tracheal muscle. J Pharmacol Exp Ther. 1977 May;201(2):276–284. [PubMed] [Google Scholar]
- Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
- Cohen R. A., Shepherd J. T., Vanhoutte P. M. 5-Hydroxytryptamine can mediate endothelium-dependent relaxation of coronary arteries. Am J Physiol. 1983 Dec;245(6):H1077–H1080. doi: 10.1152/ajpheart.1983.245.6.H1077. [DOI] [PubMed] [Google Scholar]
- EVANS D. H., SCHILD H. O., THESLEFF S. Effects of drugs on depolarized plain muscle. J Physiol. 1958 Oct 31;143(3):474–485. doi: 10.1113/jphysiol.1958.sp006072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edvinsson L., Degueurce A., Duverger D., MacKenzie E. T., Scatton B. Central serotonergic nerves project to the pial vessels of the brain. Nature. 1983 Nov 3;306(5938):55–57. doi: 10.1038/306055a0. [DOI] [PubMed] [Google Scholar]
- Ellis D., MacLeod K. T. Sodium-dependent control of intracellular pH in Purkinje fibres of sheep heart. J Physiol. 1985 Feb;359:81–105. doi: 10.1113/jphysiol.1985.sp015576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978 Mar;276:233–255. doi: 10.1113/jphysiol.1978.sp012231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara S., Kuriyama H. Nicardipine actions on smooth muscle cells and neuromuscular transmission in the guinea-pig basilar artery. J Pharmacol Exp Ther. 1983 May;225(2):447–455. [PubMed] [Google Scholar]
- Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
- Garland C. J. Endothelial cells and the electrical and mechanical responses of the rabbit coronary artery to 5-hydroxytryptamine. J Pharmacol Exp Ther. 1985 Apr;233(1):158–162. [PubMed] [Google Scholar]
- Graham J. M., Keatinge W. R. Responses of inner and outer muscle of the sheep carotid artery to injury. J Physiol. 1975 May;247(2):473–482. doi: 10.1113/jphysiol.1975.sp010942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith S. G., Lincoln J., Burnstock G. Serotonin as a neurotransmitter in cerebral arteries. Brain Res. 1982 Sep 16;247(2):388–392. doi: 10.1016/0006-8993(82)91266-5. [DOI] [PubMed] [Google Scholar]
- Hamberg M., Svensson J., Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2994–2998. doi: 10.1073/pnas.72.8.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harder D. R., Waters A. Electromechanical coupling in feline basilar artery in response to serotonin. Eur J Pharmacol. 1983 Sep 16;93(1-2):95–100. doi: 10.1016/0014-2999(83)90034-1. [DOI] [PubMed] [Google Scholar]
- Harper M. A., MacKenzie E. T. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons. J Physiol. 1977 Oct;271(3):721–733. doi: 10.1113/jphysiol.1977.sp012022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holman M. E., Surprenant A. M. Some properties of the excitatory junction potentials recorded from saphenous arteries of rabbits. J Physiol. 1979 Feb;287:337–351. doi: 10.1113/jphysiol.1979.sp012663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEATINGE W. R. MECHANISM OF ADRENERGIC STIMULATION OF MAMMALIAN ARTERIES AND ITS FAILURE AT LOW TEMPERATURES. J Physiol. 1964 Nov;174:184–205. doi: 10.1113/jphysiol.1964.sp007481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin W., Furchgott R. F., Villani G. M., Jothianandan D. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther. 1986 May;237(2):529–538. [PubMed] [Google Scholar]
- Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
- Mekata F. Different electrical responses of outer and inner muscle of rabbit carotid artery to noradrenaline and nerves. J Physiol. 1984 Jan;346:589–598. doi: 10.1113/jphysiol.1984.sp015043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moulds R. F., Iwanov V., Medcalf R. L. The effects of platelet-derived contractile agents on human digital arteries. Clin Sci (Lond) 1984 Apr;66(4):443–451. doi: 10.1042/cs0660443. [DOI] [PubMed] [Google Scholar]
- Mulvany M. J., Nilsson H., Flatman J. A., Korsgaard N. Potentiating and depressive effects of ouabain and potassium-free solutions on rat mesenteric resistance vessels. Circ Res. 1982 Oct;51(4):514–524. doi: 10.1161/01.res.51.4.514. [DOI] [PubMed] [Google Scholar]
- Mulvany M. J., Nilsson H., Flatman J. A. Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol. 1982 Nov;332:363–373. doi: 10.1113/jphysiol.1982.sp014418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POOLE J. C., SANDERS A. G., FLOREY H. W. The regeneration of aortic endothelium. J Pathol Bacteriol. 1958 Jan;75(1):133–143. doi: 10.1002/path.1700750116. [DOI] [PubMed] [Google Scholar]
- RAND M., REID G. Source of 'serotonin' in serum. Nature. 1951 Sep 1;168(4270):385–385. doi: 10.1038/168385b0. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M., Draznin M. B., Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature. 1983 Nov 10;306(5939):174–176. doi: 10.1038/306174a0. [DOI] [PubMed] [Google Scholar]
- Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature. 1985 Jul 11;316(6024):126–131. doi: 10.1038/316126a0. [DOI] [PubMed] [Google Scholar]
- Small R., Macarak E., Fisher A. B. Production of 5-hydroxyindoleacetic acid from serotonin by cultured endothelial cells. J Cell Physiol. 1977 Feb;90(2):225–231. doi: 10.1002/jcp.1040900208. [DOI] [PubMed] [Google Scholar]
- WAUGH W. H. Adrenergic stimulation of depolarized arterial muscle. Circ Res. 1962 Aug;11:264–276. doi: 10.1161/01.res.11.2.264. [DOI] [PubMed] [Google Scholar]