Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1986 Jan;370:255–265. doi: 10.1113/jphysiol.1986.sp015933

Blood pressure response evoked by ventral root afferent fibres in the cat.

J M Chung, J Kim, H K Shin
PMCID: PMC1192679  PMID: 3958979

Abstract

Systemic arterial blood pressure changes in response to stimulation of the distal stump of the cut spinal ventral root were investigated in anaesthetized, vagotomized, and carotid sinus-denervated cats. Low intensity electrical stimulation (less than 20 T, where T is threshold intensity) of the ventral root caused a rise in blood pressure. This elevation was abolished by paralysing the muscles with gallamine. This pressor response has been reported previously, and it is likely to be evoked by afferents excited by the contracting muscle. High intensity electrical stimulation (500 T) of the ventral root caused a second and marked pressor response. This was not affected by muscular paralysis or by cutting the sciatic nerve, but it was abolished by cutting the dorsal root. Threshold intensity for the second component of the pressor response was within the same range as the intensity needed for activation of C fibres in the ventral root, ranging between 200 T and 300 T. This response was graded with increasing stimulus intensity, and it showed both spatial and temporal summation. From the above results, we conclude that non-myelinated fibres in feline spinal ventral root course distally to the dorsal root ganglion and then enter the spinal cord via the dorsal root. Activation of these fibres results in a marked elevation of the systemic arterial blood pressure as in other somato-sympathetic reflexes induced by peripheral C fibre activation.

Full text

PDF
258

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chung J. M., Lee K. H., Endo K., Coggeshall R. E. Activation of central neurons by ventral root afferents. Science. 1983 Nov 25;222(4626):934–935. doi: 10.1126/science.6635665. [DOI] [PubMed] [Google Scholar]
  2. Chung J. M., Lee K. H., Kim J., Coggeshall R. E. Activation of dorsal horn cells by ventral root stimulation in the cat. J Neurophysiol. 1985 Aug;54(2):261–272. doi: 10.1152/jn.1985.54.2.261. [DOI] [PubMed] [Google Scholar]
  3. Chung J. M., Webber C. L., Jr, Wurster R. D. Ascending spinal pathways for the somatosympathetic A and C reflexes. Am J Physiol. 1979 Sep;237(3):H342–H347. doi: 10.1152/ajpheart.1979.237.3.H342. [DOI] [PubMed] [Google Scholar]
  4. Chung J. M., Wurster R. D. Ascending pressor and depressor pathways in the cat spinal cord. Am J Physiol. 1976 Sep;231(3):786–792. doi: 10.1152/ajplegacy.1976.231.3.786. [DOI] [PubMed] [Google Scholar]
  5. Chung J. M., Wurster R. D. Neurophysiological evidence for spatial summation in the CNS from unmyelinated afferent fibers. Brain Res. 1978 Sep 29;153(3):596–601. doi: 10.1016/0006-8993(78)90344-x. [DOI] [PubMed] [Google Scholar]
  6. Clifton G. L., Coggeshall R. E., Vance W. H., Willis W. D. Receptive fields of unmyelinated ventral root afferent fibres in the cat. J Physiol. 1976 Apr;256(3):573–600. doi: 10.1113/jphysiol.1976.sp011340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coggeshall R. E., Applebaum M. L., Fazen M., Stubbs T. B., 3rd, Sykes M. T. Unmyelinated axons in human ventral roots, a possible explanation for the failure of dorsal rhizotomy to relieve pain. Brain. 1975 Mar;98(1):157–166. doi: 10.1093/brain/98.1.157. [DOI] [PubMed] [Google Scholar]
  8. Coggeshall R. E., Coulter J. D., Willis W. D., Jr Unmyelinated axons in the ventral roots of the cat lumbosacral enlargement. J Comp Neurol. 1974 Jan 1;153(1):39–58. doi: 10.1002/cne.901530105. [DOI] [PubMed] [Google Scholar]
  9. Coggeshall R. E., Ito H. Sensory fibres in ventral roots L7 and Si in the cat. J Physiol. 1977 May;267(1):215–235. doi: 10.1113/jphysiol.1977.sp011809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coggeshall R. E. Law of separation of function of the spinal roots. Physiol Rev. 1980 Jul;60(3):716–755. doi: 10.1152/physrev.1980.60.3.716. [DOI] [PubMed] [Google Scholar]
  11. Coote J. H., Hilton S. M., Perez-Gonzalez J. F. The reflex nature of the pressor response to muscular exercise. J Physiol. 1971 Jul;215(3):789–804. doi: 10.1113/jphysiol.1971.sp009498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coote J. H., Perez-Gonzalez J. F. The response of some sympathetic neurones to volleys in various afferent nerves. J Physiol. 1970 Jun;208(2):261–278. doi: 10.1113/jphysiol.1970.sp009118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher M. L., Nutter D. O. Cardiovascular reflex adjustments to static muscular contractions in the canine hindlimb. Am J Physiol. 1974 Mar;226(3):648–655. doi: 10.1152/ajplegacy.1974.226.3.648. [DOI] [PubMed] [Google Scholar]
  14. Hunt R. The Fall of Blood-pressure resulting from the Stimulation of Afferent Nerves. J Physiol. 1895 Nov 16;18(5-6):381–410. doi: 10.1113/jphysiol.1895.sp000575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. JOHANSSON B. Circulatory responses to stimulation of somatic afferents with special reference to depressor effects from muscle nerves. Acta Physiol Scand Suppl. 1962;198:1–91. [PubMed] [Google Scholar]
  16. Kaufman M. P., Longhurst J. C., Rybicki K. J., Wallach J. H., Mitchell J. H. Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):105–112. doi: 10.1152/jappl.1983.55.1.105. [DOI] [PubMed] [Google Scholar]
  17. Kim J., Chung J. M. Electrophysiological evidence for the presence of fibers in continuity between dorsal and ventral roots in the cat. Brain Res. 1985 Jul 15;338(2):355–359. doi: 10.1016/0006-8993(85)90168-4. [DOI] [PubMed] [Google Scholar]
  18. Koizumi K., Collin R., Kaufman A., Brooks C. M. Contribution of unmyelinated afferent excitation to sympathetic reflexes. Brain Res. 1970 May 20;20(1):99–106. doi: 10.1016/0006-8993(70)90158-7. [DOI] [PubMed] [Google Scholar]
  19. Light A. R., Metz C. B. The morphology of the spinal cord efferent and afferent neurons contributing to the ventral roots of the cat. J Comp Neurol. 1978 Jun 1;179(3):501–515. doi: 10.1002/cne.901790304. [DOI] [PubMed] [Google Scholar]
  20. Longhurst J. C., Mitchell J. H., Moore M. B. The spinal cord ventral root: an afferent pathway of the hind-limb pressor reflex in cats. J Physiol. 1980 Apr;301:467–476. doi: 10.1113/jphysiol.1980.sp013218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maynard C. W., Leonard R. B., Coulter J. D., Coggeshall R. E. Central connections of ventral root afferents as demonstrated by the HRP method. J Comp Neurol. 1977 Apr 15;172(4):601–608. doi: 10.1002/cne.901720404. [DOI] [PubMed] [Google Scholar]
  22. McCloskey D. I., Mitchell J. H. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol. 1972 Jul;224(1):173–186. doi: 10.1113/jphysiol.1972.sp009887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmidt R. F., Weller E. Reflex activity in the cervical and lumbar sympathetic trunk induced by unmyelinated somatic afferents. Brain Res. 1970 Dec 1;24(2):207–218. doi: 10.1016/0006-8993(70)90101-0. [DOI] [PubMed] [Google Scholar]
  24. Yamamoto T., Takahashi K., Satomi H., Ise H. Origins of primary afferent fibers in the spinal ventral roots in the cat as demonstrated by the horseradish peroxidase method. Brain Res. 1977 May 6;126(2):350–354. doi: 10.1016/0006-8993(77)90731-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES