Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Jul;364:131–149. doi: 10.1113/jphysiol.1985.sp015735

Effects of thyroid hormone on calcium handling in cultured chick ventricular cells.

D Kim, T W Smith
PMCID: PMC1192960  PMID: 2411914

Abstract

Mechanisms underlying thyroid hormone-induced changes in myocardial contractile state were investigated by studying the effects of triiodothyronine (T3) on Ca2+ fluxes across the sarcolemmal membrane and Ca2+ handling by the sarcoplasmic reticulum, using spontaneously contracting monolayers of cultured chick embryo ventricular cells. Cells were grown in serum-free medium containing either no T3 or 10(-8) M-T3 for 48 h. At [Ca2+]o levels of 0.6 and 1.2 mM, the velocity of cell contraction was significantly greater in cells grown in 10(-8) M-T3 than in its absence. At higher [Ca2+]o, no differences in the velocity of contraction were noted. 45Ca2+ exchange kinetic studies showed a biexponential pattern with a rapid and a slow component of uptake in cells grown both with and without 10(-8) M-T3. The rate of the rapid phase of uptake and total Ca2+ content were higher in cells grown in T3, with the increment in content ascribable to the rapidly exchangeable Ca2+ pool. Verapamil partially inhibited the T3-induced increase in the rapidly exchangeable pool. 45Ca2+ uptake in response to a step change to Na+-free medium in the presence of 1 microM-verapamil was significantly greater in cells grown in 10(-8) M-T3 than in T3-free medium. Cells grown in T3 showed 20% greater beating rate than cells grown in its absence. A similar increase in beating rate achieved by lowering [K+]o from 4.0 to 3.0 mM or by electrical stimulation failed to affect the rate of 45Ca2+ uptake or the size of the rapidly exchangeable pool; pacing-induced increases in rate resulted in reduction rather than augmentation of contractile state. Ca2+ efflux rate was greater in cells grown in 10(-8) M-T3 than in T3-free medium, whereas cells loaded with various levels of Ca2+ acutely by incubation at selected [Ca2+]o levels had similar efflux rates. Replacement of Na+ by choline in the efflux medium resulted in elevated Ca2+ efflux rates in cells grown both with and without T3; however, it remained greater in cells grown in 10(-8) M-T3 than in its absence. Caffeine (20 mM) in the efflux medium increased Ca2+ efflux to a greater degree in cells grown in T3 than without it. Caffeine also produced a greater tonic contraction in T3-treated cells than in cells grown in absence of T3 in Na+- and Ca2+-free medium.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
134

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee S. K., Morkin E. Actin-activated adenosine triphosphatase activity of native and N-ethylmaleimide-modified cardiac myosin from normal and thyrotoxic rabbits. Circ Res. 1977 Nov;41(5):630–634. doi: 10.1161/01.res.41.5.630. [DOI] [PubMed] [Google Scholar]
  2. Barry W. H., Smith T. W. Mechanisms of transmembrane calcium movement in cultured chick embryo ventricular cells. J Physiol. 1982 Apr;325:243–260. doi: 10.1113/jphysiol.1982.sp014148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry W. H., Smith T. W. Movement of Ca2+ across the sarcolemma: effects of abrupt exposure to zero external Na concentration. J Mol Cell Cardiol. 1984 Feb;16(2):155–164. doi: 10.1016/s0022-2828(84)80704-x. [DOI] [PubMed] [Google Scholar]
  4. Biedert S., Barry W. H., Smith T. W. Inotropic effects and changes in sodium and calcium contents associated with inhibition of monovalent cation active transport by ouabain in cultured myocardial cells. J Gen Physiol. 1979 Oct;74(4):479–494. doi: 10.1085/jgp.74.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blayney L., Thomas H., Muir J., Henderson A. Action of caffeine on calcium transport by isolated fractions of myofibrils, mitochondria, and sarcoplasmic reticulum from rabbit heart. Circ Res. 1978 Oct;43(4):520–526. doi: 10.1161/01.res.43.4.520. [DOI] [PubMed] [Google Scholar]
  6. Blinks J. R., Olson C. B., Jewell B. R., Bravený P. Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle. Evidence for a dual mechanism of action. Circ Res. 1972 Apr;30(4):367–392. doi: 10.1161/01.res.30.4.367. [DOI] [PubMed] [Google Scholar]
  7. Buccino R. A., Spann J. F., Jr, Pool P. E., Sonnenblick E. H., Braunwald E. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J Clin Invest. 1967 Oct;46(10):1669–1682. doi: 10.1172/JCI105658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caroni P., Carafoli E. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Nature. 1980 Feb 21;283(5749):765–767. doi: 10.1038/283765a0. [DOI] [PubMed] [Google Scholar]
  9. Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
  10. Chapman R. A. A study of the contractures induced in frog atrial trabeculae by a reduction of the bathing sodium concentration. J Physiol. 1974 Mar;237(2):295–313. doi: 10.1113/jphysiol.1974.sp010483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chapman R. A., Léoty C. The time-dependent and dose-dependent effects of caffeine on the contraction of the ferret heart. J Physiol. 1976 Apr;256(2):287–314. doi: 10.1113/jphysiol.1976.sp011326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clark W. A., Jr, Chizzonite R. A., Everett A. W., Rabinowitz M., Zak R. Species correlations between cardiac isomyosins. A comparison of electrophoretic and immunological properties. J Biol Chem. 1982 May 25;257(10):5449–5454. [PubMed] [Google Scholar]
  13. Conway G., Heazlitt R. A., Fowler N. O., Gabel M., Green S. The effect of hyperthyroidism on the sarcoplasmic reticulum and myosin ATPase of dog hearts. J Mol Cell Cardiol. 1976 Jan;8(1):39–51. doi: 10.1016/0022-2828(76)90092-4. [DOI] [PubMed] [Google Scholar]
  14. Davis P. J., Blas S. D. In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1073–1080. doi: 10.1016/0006-291x(81)90728-2. [DOI] [PubMed] [Google Scholar]
  15. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  16. Fabiato A., Fabiato F. Calcium and cardiac excitation-contraction coupling. Annu Rev Physiol. 1979;41:473–484. doi: 10.1146/annurev.ph.41.030179.002353. [DOI] [PubMed] [Google Scholar]
  17. Flink I. L., Rader J. H., Morkin E. Thyroid hormone stimulates synthesis of a cardiac myosin isozyme. Comparison of the two-two-dimensional electrophoretic patterns of the cyanogen bromide peptides of cardiac myosin heavy chains from euthyroid and thyrotoxic rabbits. J Biol Chem. 1979 Apr 25;254(8):3105–3110. [PubMed] [Google Scholar]
  18. Fosset M., De Barry J., Lenoir M. C., Lazdunski M. Analysis of molecular aspects of Na+ and Ca2+ uptakes by embryonic cardiac cells in culture. J Biol Chem. 1977 Sep 10;252(17):6112–6117. [PubMed] [Google Scholar]
  19. Glitsch H. G., Reuter H., Scholz H. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol. 1970 Jul;209(1):25–43. doi: 10.1113/jphysiol.1970.sp009153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goodkind M. J., Dambach G. E., Thyrum P. T., Luchi R. J. Effect of thyroxine on ventricular myocardial contractility and ATPase activity in guinea pigs. Am J Physiol. 1974 Jan;226(1):66–72. doi: 10.1152/ajplegacy.1974.226.1.66. [DOI] [PubMed] [Google Scholar]
  21. Guarnieri T., Filburn C. R., Beard E. S., Lakatta E. G. Enhanced contractile response and protein kinase activation to threshold levels of beta-adrenergic stimulation in hyperthyroid rat heart. J Clin Invest. 1980 Apr;65(4):861–868. doi: 10.1172/JCI109738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoh J. F., McGrath P. A., Hale P. T. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol. 1978 Nov;10(11):1053–1076. doi: 10.1016/0022-2828(78)90401-7. [DOI] [PubMed] [Google Scholar]
  23. Holland P. C. Biosynthesis of the Ca2+- and Mg2+-dependent adenosine triphosphatase of sarcoplasmic reticulum in cell cultures of embryonic chick heart. J Biol Chem. 1979 Aug 25;254(16):7604–7610. [PubMed] [Google Scholar]
  24. Horackova M., Vassort G. Sodium-calcium exchange in regulation of cardiac contractility. Evidence for an electrogenic, voltage-dependent mechanism. J Gen Physiol. 1979 Apr;73(4):403–424. doi: 10.1085/jgp.73.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ismail-Beigi F., Edelman I. S. Effects of thyroid status on electrolyte distribution in rat tissues. Am J Physiol. 1973 Nov;225(5):1172–1177. doi: 10.1152/ajplegacy.1973.225.5.1172. [DOI] [PubMed] [Google Scholar]
  26. Johnson P. N., Freedberg A. S., Marshall J. M. Action of thyroid hormone on the transmembrane potentials from sinoatrial node cells and atrial muscle cells in isolated atria of rabbits. Cardiology. 1973;58(5):273–289. doi: 10.1159/000169643. [DOI] [PubMed] [Google Scholar]
  27. Kim D., Smith T. W. Effects of thyroid hormone on sodium pump sites, sodium content, and contractile responses to cardiac glycosides in cultured chick ventricular cells. J Clin Invest. 1984 Oct;74(4):1481–1488. doi: 10.1172/JCI111561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Langer G. A., Nudd L. M., Ricchiuti N. V. The effect of sodium deficient perfusion on calcium exchange in cardiac tissue culture. J Mol Cell Cardiol. 1976 Apr;8(4):321–328. doi: 10.1016/0022-2828(76)90006-7. [DOI] [PubMed] [Google Scholar]
  30. Libby P. Long-term culture of contractile mammalian heart cells in a defined serum-free medium that limits non-muscle cell proliferation. J Mol Cell Cardiol. 1984 Sep;16(9):803–811. doi: 10.1016/s0022-2828(84)80004-8. [DOI] [PubMed] [Google Scholar]
  31. Limas C. J. Enhanced phosphorylation of myocardial sarcoplasmic reticulum in experimental hyperthyroidism. Am J Physiol. 1978 Apr;234(4):H426–H431. doi: 10.1152/ajpheart.1978.234.4.H426. [DOI] [PubMed] [Google Scholar]
  32. Litten R. Z., 3rd, Martin B. J., Howe E. R., Alpert N. R., Solaro R. J. Phosphorylation and adenosine triphosphatase activity of myofibrils from thyrotoxic rabbit hearts. Circ Res. 1981 Apr;48(4):498–501. doi: 10.1161/01.res.48.4.498. [DOI] [PubMed] [Google Scholar]
  33. Martonosi A., Roufa D., Boland R., Reyes E., Tillack T. W. Development of sarcoplasmic reticulum in cultured chicken muscle. J Biol Chem. 1977 Jan 10;252(1):318–332. [PubMed] [Google Scholar]
  34. Morkin E., Flink I. L., Goldman S. Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog Cardiovasc Dis. 1983 Mar-Apr;25(5):435–464. doi: 10.1016/0033-0620(83)90004-x. [DOI] [PubMed] [Google Scholar]
  35. Nayler W. G., Merrillees N. C., Chipperfield D., Kurtz J. B. Influence of hyperthyroidism on the uptake and binding of calcium by cardiac microsomal fractions and on mitochondrial structure. Cardiovasc Res. 1971 Oct;5(4):469–482. doi: 10.1093/cvr/5.4.469. [DOI] [PubMed] [Google Scholar]
  36. Pannier J. L. The influence of thyroid hormone on myocardial contractility. Arch Int Physiol Biochim. 1968 Jul;76(3):477–490. doi: 10.3109/13813456809058720. [DOI] [PubMed] [Google Scholar]
  37. Pitts B. J. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. Coupling to the sodium pump. J Biol Chem. 1979 Jul 25;254(14):6232–6235. [PubMed] [Google Scholar]
  38. Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Reiter M. Differences in the inotropic cardiac effects of noradrenaline and dihydro-ouabain. Naunyn Schmiedebergs Arch Pharmacol. 1972;275(3):243–250. doi: 10.1007/BF00500053. [DOI] [PubMed] [Google Scholar]
  40. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rudinger A., Mylotte K. M., Davis P. J., Davis F. B., Blas S. D. Rabbit myocardial membrane Ca2+-adenosine triphosphatase activity: stimulation in vitro by thyroid hormone. Arch Biochem Biophys. 1984 Feb 15;229(1):379–385. doi: 10.1016/0003-9861(84)90165-6. [DOI] [PubMed] [Google Scholar]
  42. Strauer B. E., Scherpe A. Experimental hyperthyroidism II. Mechanics of contraction and relaxation of isolated ventricular myocardium. Basic Res Cardiol. 1975 Mar-Apr;70(2):131–141. [PubMed] [Google Scholar]
  43. Suko J. Alterations of Ca 2 uptake and Ca 2+ activated ATPase of cardiac sarcoplasmic reticulum in hyper- and hypothyroidism. Biochim Biophys Acta. 1971 Nov 12;252(2):324–327. doi: 10.1016/0304-4165(71)90013-4. [DOI] [PubMed] [Google Scholar]
  44. Suko J. The calcium pump of cardiac sarcoplasmic reticulum. Functional alterations at different levels of thyroid state in rabbits. J Physiol. 1973 Feb;228(3):563–582. doi: 10.1113/jphysiol.1973.sp010100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Taylor R. R., Covell J. W., Ross J., Jr Influence of the thyroid state on left ventricular tension-velocity relations in the intact, sedated dog. J Clin Invest. 1969 Apr;48(4):775–784. doi: 10.1172/JCI106035. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES