Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Feb;359:401–415. doi: 10.1113/jphysiol.1985.sp015592

Electrical responses of smooth muscle cells of the rabbit ear artery to adenosine triphosphate.

H Suzuki
PMCID: PMC1193382  PMID: 3999045

Abstract

Ionophoretic application of ATP to smooth muscle cells of the rabbit ear artery produced rapid depolarization of the membrane and, in the case of large doses of ATP, spike potentials or slow oscillatory potentials. The ATP response desensitized rapidly, and required over 70 s for recovery. When the intervals between repetitive application of ATP were shorter than 70 s, the amplitudes of the ATP responses successively decreased. Ejection of ATP with increasing intensities of current (10-15% of the first) was required to produce successively increasing amplitudes of ATP responses. Repetitive stimulation of perivascular nerves (at intervals of less than 10 s) evoked increasing amplitude of excitatory junction potentials (e.j.p.s). Quinidine (over 5 X 10(-5) M) inhibited and theophylline (over 5 X 10(-4) M) enhanced the ATP response, with associated depolarization or hyperpolarization of the membrane, respectively. Cocaine (over 10(-6) M) depolarized the membrane and enhanced the ATP response. Phentolamine reduced the amplitude of the ATP response with no change in the membrane potential, only when the concentration was extremely high (over 10(-4) M). These all therefore appear to represent non-specific interactions with the effects of ATP. Bath application of ATP depolarized the membrane dose dependently and, at concentrations over 5 X 10(-7) M, produced spike potentials. The amplitude of electrotonic potentials decreased during the ATP-induced depolarization, thereby suggesting an increase in ionic conductance of the membrane. ADP depolarized the membrane, the effect being weaker than that of ATP. Both AMP and adenosine hyperpolarized the membrane. The results provide evidence that in the rabbit ear artery, the e.j.p. could be mimicked by ATP. ATP can however only account for the fast e.j.p. if it is released in increasing amounts with successive nerve discharges. Reported blocking agents for ATP receptors did not block the response to ATP in this tissue.

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Tomita T. Cable properties of smooth muscle. J Physiol. 1968 May;196(1):87–100. doi: 10.1113/jphysiol.1968.sp008496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURNSTOCK G., HOLMAN M. E., KURIYAMA H. FACILITATION OF TRANSMISSION FROM AUTONOMIC NERVE TO SMOOTH MUSCLE OF GUINEA-PIG VAS DEFERENS. J Physiol. 1964 Jul;172:31–49. doi: 10.1113/jphysiol.1964.sp007401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer V., Kuriyama H. The nature of non-cholinergic, non-adrenergic transmission in longitudinal and circular muscles of the guinea-pig ileum. J Physiol. 1982 Nov;332:375–391. doi: 10.1113/jphysiol.1982.sp014419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casteels R., Suzuki H. The effect of histamine on the smooth muscle cells of the ear artery of the rabbit. Pflugers Arch. 1980 Aug;387(1):17–25. doi: 10.1007/BF00580839. [DOI] [PubMed] [Google Scholar]
  5. Creed K. E., Ishikawa S., Ito Y. Electrical and mechanical activity recorded from rabbit urinary bladder in response to nerve stimulation. J Physiol. 1983 May;338:149–164. doi: 10.1113/jphysiol.1983.sp014666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Den Hertog A. Calcium and the action of adrenaline, adenosine triphosphate and carbachol on guinea-pig taenia caeci. J Physiol. 1982 Apr;325:423–439. doi: 10.1113/jphysiol.1982.sp014160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Head R. J., Stitzel R. E., de la Lande I. S., Johnson S. M. Effect of chronic denervation on the activities of monoamine oxidase and catechol-O-methyl transferase and on the contents of noradrenaline and adenosine triphosphate in the rabbit ear artery. Blood Vessels. 1977;14(4):229–239. doi: 10.1159/000158131. [DOI] [PubMed] [Google Scholar]
  8. Hirst G. D., Neild T. O. Localization of specialized noradrenaline receptors at neuromuscular junctions on arterioles of the guinea-pig. J Physiol. 1981;313:343–350. doi: 10.1113/jphysiol.1981.sp013669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holman M. E., Surprenant A. An electrophysiological analysis of the effects of noradrenaline and alpha-receptor antagonists on neuromuscular transmission in mammalian muscular arteries. Br J Pharmacol. 1980;71(2):651–661. doi: 10.1111/j.1476-5381.1980.tb10986.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Illes P., Starke K. An electrophysiological study of presynaptic alpha-adrenoceptors in the vas deferens of the mouse. Br J Pharmacol. 1983 Feb;78(2):365–373. doi: 10.1111/j.1476-5381.1983.tb09402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito Y., Takeda K. Non-adrenergic inhibitory nerves and putative transmitters in the smooth muscle of cat trachea. J Physiol. 1982 Sep;330:497–511. doi: 10.1113/jphysiol.1982.sp014355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuriyama H., Ito Y., Suzuki H., Kitamura K., Itoh T. Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am J Physiol. 1982 Nov;243(5):H641–H662. doi: 10.1152/ajpheart.1982.243.5.H641. [DOI] [PubMed] [Google Scholar]
  13. Kuriyama H., Makita Y. The presynaptic regulation of noradrenaline release differs in mesenteric arteries of the rabbit and guinea-pig. J Physiol. 1984 Jun;351:379–396. doi: 10.1113/jphysiol.1984.sp015251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuriyama H., Suyama A. Multiple actions of cocaine on neuromuscular transmission and smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1983 Apr;337:631–654. doi: 10.1113/jphysiol.1983.sp014646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mishima S., Miyahara H., Suzuki H. Transmitter release modulated by alpha-adrenoceptor antagonists in the rabbit mesenteric artery: a comparison between noradrenaline outflow and electrical activity. Br J Pharmacol. 1984 Oct;83(2):537–547. doi: 10.1111/j.1476-5381.1984.tb16518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muramatsu I., Fujiwara M., Miura A., Sakakibara Y. Possible involvement of adenine nucleotides in sympathetic neuroeffector mechanisms of dog basilar artery. J Pharmacol Exp Ther. 1981 Feb;216(2):401–409. [PubMed] [Google Scholar]
  17. Ninomiya J. G., Suzuki H. Electrical responses of smooth muscle cells of the mouse uterus to adenosine triphosphate. J Physiol. 1983 Sep;342:499–515. doi: 10.1113/jphysiol.1983.sp014865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Silinsky E. M., Ginsborg B. L. Inhibition of acetylcholine release from preganglionic frog nerves by ATP but not adenosine. Nature. 1983 Sep 22;305(5932):327–328. doi: 10.1038/305327a0. [DOI] [PubMed] [Google Scholar]
  19. Sneddon P., Westfall D. P., Fedan J. S. Cotransmitters in the motor nerves of the guinea pig vas deferens: electrophysiological evidence. Science. 1982 Nov 12;218(4573):693–695. doi: 10.1126/science.6291151. [DOI] [PubMed] [Google Scholar]
  20. Sneddon P., Westfall D. P. Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol. 1984 Feb;347:561–580. doi: 10.1113/jphysiol.1984.sp015083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Su C. Neurogenic release of purine compounds in blood vessels. J Pharmacol Exp Ther. 1975 Oct;195(1):159–166. [PubMed] [Google Scholar]
  22. Suzuki H., Fujiwara S. Neurogenic electrical responses of single smooth muscle cells of the dog middle cerebral artery. Circ Res. 1982 Dec;51(6):751–759. doi: 10.1161/01.res.51.6.751. [DOI] [PubMed] [Google Scholar]
  23. Suzuki H., Kou K. Electrical components contributing to the nerve-mediated contractions in the smooth muscles of the rabbit ear artery. Jpn J Physiol. 1983;33(5):743–756. doi: 10.2170/jjphysiol.33.743. [DOI] [PubMed] [Google Scholar]
  24. Suzuki H., Kuriyama H. Observation of quantal release of noradrenaline from vascular smooth muscles in potassium-free solution. Jpn J Physiol. 1980;30(4):665–670. doi: 10.2170/jjphysiol.30.665. [DOI] [PubMed] [Google Scholar]
  25. Takata Y., Kuriyama H. ATP-induced hyperpolarization of smooth muscle cells of the guinea-pig coronary artery. J Pharmacol Exp Ther. 1980 Mar;212(3):519–526. [PubMed] [Google Scholar]
  26. Tomita T., Watanabe H. A comparison of the effects of adenosine triphosphate with noradrenaline and with the inhibitory potential of the guinea-pig taenia coli. J Physiol. 1973 May;231(1):167–177. doi: 10.1113/jphysiol.1973.sp010226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vanhoutte P. M., Verbeuren T. J., Webb R. C. Local modulation of adrenergic neuroeffector interaction in the blood vessel well. Physiol Rev. 1981 Jan;61(1):151–247. doi: 10.1152/physrev.1981.61.1.151. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES