Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Sep;354:11–27. doi: 10.1113/jphysiol.1984.sp015359

Involvement of the renin-angiotensin system in captopril-induced sodium appetite in the rat.

R M Elfont, A N Epstein, J T Fitzsimons
PMCID: PMC1193395  PMID: 6090647

Abstract

The angiotensin converting enzyme inhibitor, captopril, given to rats in their drinking water (about 40 mg/day) for 6 days caused an increase in intake of hypertonic NaCl solution which began 1-2 days after the captopril was started and reached a plateau after 4-5 days. Twice-daily subcutaneous injections of captopril (15 mg per injection) elicited a sodium appetite similar in pattern to that seen with oral administration. The rats remained in sodium and fluid balance during oral captopril treatment and the haematocrit did not alter. Captopril infused directly into the ventricles (12 micrograms/h), or captopril reaching the brain from the periphery across a leaky blood-brain barrier, suppressed the sodium appetite which normally follows oral captopril. Continuous intravenous infusion of captopril at rates high enough to block angiotensin converting enzyme in the brain (25, 50 or 500 mg/day) did not cause sodium appetite. As soon as the rate was reduced to a low value (5 mg/day), NaCl intake increased. In conclusion, moderate levels of circulating captopril which do not cross the blood-brain barrier in sufficient amounts to block cerebral angiotensin converting enzyme, result in an increase in circulating angiotensin I which stimulates sodium appetite when it is converted to angiotension II in the brain.

Full text

PDF
13

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson B., Dallman M. F., Olsson K. Evidence for a hypothalamic control of renal sodium excretion. Acta Physiol Scand. 1969 Mar;75(3):496–510. doi: 10.1111/j.1748-1716.1969.tb04403.x. [DOI] [PubMed] [Google Scholar]
  2. Avrith D. B., Fitzsimons J. T. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J Physiol. 1980 Apr;301:349–364. doi: 10.1113/jphysiol.1980.sp013210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avrith D. B., Fitzsimons J. T. Renin-induced sodium appetite: effects on sodium balance and mediation by angiotensin in the rat. J Physiol. 1983 Apr;337:479–496. doi: 10.1113/jphysiol.1983.sp014637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barney C. C., Katovich M. J., Fregly M. J. The effect of acute administration of an angiotensin converting enzyme inhibitor, captopril (SQ 14,225), on experimentally induced thirsts in rats. J Pharmacol Exp Ther. 1980 Jan;212(1):53–57. [PubMed] [Google Scholar]
  5. Bryant R. W., Epstein A. N., Fitzsimons J. T., Fluharty S. J. Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J Physiol. 1980 Apr;301:365–382. doi: 10.1113/jphysiol.1980.sp013211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buggy J., Fisher A. E. Evidence for a dual central role for angiotensin in water and sodium intake. Nature. 1974 Aug 30;250(5469):733–735. doi: 10.1038/250733a0. [DOI] [PubMed] [Google Scholar]
  7. Cohen M. L., Kurz K. D. Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421. J Pharmacol Exp Ther. 1982 Jan;220(1):63–69. [PubMed] [Google Scholar]
  8. Davis J. O., Freeman R. H. Mechanisms regulating renin release. Physiol Rev. 1976 Jan;56(1):1–56. doi: 10.1152/physrev.1976.56.1.1. [DOI] [PubMed] [Google Scholar]
  9. Dean H. G., Ingham S. The effect of SQ 14225 on fluid intake in DOCA/salt hypertensive rats [proceedings]. Br J Pharmacol. 1978 Nov;64(3):390P–391P. [PMC free article] [PubMed] [Google Scholar]
  10. Elfont R. M., Fitzsimons J. T. Renin dependence of captopril-induced drinking after ureteric ligation in the rat. J Physiol. 1983 Oct;343:17–30. doi: 10.1113/jphysiol.1983.sp014879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evered M. D., Robinson M. M., Richardson M. A. Captopril given intracerebroventricularly, subcutaneously or by gavage inhibits angiotensin-converting enzyme activity in the rat brain. Eur J Pharmacol. 1980 Dec 19;68(4):443–449. doi: 10.1016/0014-2999(80)90419-7. [DOI] [PubMed] [Google Scholar]
  12. Findlay A. L., Epstein A. N. Increased sodium intake is somehow induced in rats by intravenous angiotnesin II. Horm Behav. 1980 Mar;14(1):86–92. doi: 10.1016/0018-506x(80)90018-5. [DOI] [PubMed] [Google Scholar]
  13. Fluharty S. J., Manaker S. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: I. Relation to urinary sodium excretion. Behav Neurosci. 1983 Oct;97(5):738–745. doi: 10.1037//0735-7044.97.5.738. [DOI] [PubMed] [Google Scholar]
  14. Fregly M. J. Effect of the angiotensin converting enzyme inhibitor, captopril, on NaCl appetite of rats. J Pharmacol Exp Ther. 1980 Nov;215(2):407–412. [PubMed] [Google Scholar]
  15. Hall J. E., Guyton A. C., Smith M. J., Jr, Coleman T. G. Chronic blockade of angiotensin II formation during sodium deprivation. Am J Physiol. 1979 Dec;237(6):F424–F432. doi: 10.1152/ajprenal.1979.237.6.F424. [DOI] [PubMed] [Google Scholar]
  16. Jalowiec J. E., Stricker E. M. Sodium appetite in rats after apparent recovery from acute sodium deficiency. J Comp Physiol Psychol. 1970 Nov;73(2):238–244. doi: 10.1037/h0030215. [DOI] [PubMed] [Google Scholar]
  17. Katovich M. J., Barney C. C., Fregly M. J., McCaa R. E. Effect of an angiotensin converting enzyme inhibitor (SQ 14,225) on beta-adrenergic and angiotensin-induced thirsts. Eur J Pharmacol. 1979 Jun;56(1-2):123–130. doi: 10.1016/0014-2999(79)90441-2. [DOI] [PubMed] [Google Scholar]
  18. Lehr D., Goldman H. W., Casner P. Renin-angiotensin role in thirst: paradoxical enhancement of drinking by angiotensin converting enzyme inhibitor. Science. 1973 Dec 7;182(4116):1031–1034. doi: 10.1126/science.182.4116.1031. [DOI] [PubMed] [Google Scholar]
  19. MacGregor G. A., Markandu N. D., Roulston J. E., Jones J. C., Morton J. J. Maintenance of blood pressure by the renin-angiotensin system in normal man. Nature. 1981 May 28;291(5813):329–331. doi: 10.1038/291329a0. [DOI] [PubMed] [Google Scholar]
  20. McCaa R. E., McCaa C. S., Bengis R. G., Guyton A. C. Role of aldosterone in experimental hypertension. J Endocrinol. 1979 May;81(2):69P–78P. [PubMed] [Google Scholar]
  21. Nicolaidis S., Rowland N., Meile M. J., Marfaing-Jallat P., Pesez A. A flexible technique for long term infusions in unrestrained rats. Pharmacol Biochem Behav. 1974 Jan-Feb;2(1):131–136. doi: 10.1016/0091-3057(74)90147-6. [DOI] [PubMed] [Google Scholar]
  22. Severs W. B., Daniels-Severs A., Summy-Long J., Radio G. J. Effects of centrally administered angiotensin II on salt and water excretion. Pharmacology. 1971;6(4):242–252. doi: 10.1159/000136249. [DOI] [PubMed] [Google Scholar]
  23. Tang M., Falk J. L. Temporary peritoneal sequestration of NaCl and persistent NaCl appetite. Physiol Behav. 1979 Mar;22(3):595–597. doi: 10.1016/0031-9384(79)90029-5. [DOI] [PubMed] [Google Scholar]
  24. Wolf G., Handal P. J. Aldosterone-induced sodium appetite: dose-response and specificity. Endocrinology. 1966 Jun;78(6):1120–1124. doi: 10.1210/endo-78-6-1120. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES