Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Dec;345:65–74. doi: 10.1113/jphysiol.1983.sp014965

Vagal influences on the jejunal 'minute rhythm' in the anaesthetized ferret.

P I Collman, D Grundy, T Scratcherd
PMCID: PMC1193784  PMID: 6663513

Abstract

Spontaneous jejunal motility in the urethane-anaesthetized ferret shows a cyclical pattern of contraction bursts alternating with quiescent periods described as 'minute rhythm' in conscious animals. Cooling the cervical vagi to below 4 degrees C or acute vagotomy abolished this pattern of motility. On re-warming the vagi there was a return to cyclical motility after a latency which depended upon the contractile state at the time vagal conduction was restored. Electrical vagal stimulation produced bursts of contractions at the same frequency as the spontaneous motility. Longer periods of stimulation gave rise to bursts of contractions interrupted by periods of relative quiescence, mimicking the spontaneous motility, despite the continuous stimulation. Following atropinization all spontaneous motility was abolished, but electrical stimulation of the vagi revealed a non-cholinergic, non-adrenergic response whose characteristics differed from that of the cholinergic response. It is concluded that the vagus plays a permissive role in regulating the jejunal 'minute rhythm' via a cholinergic pathway and that there is a second excitatory vagal pathway which innervates non-cholinergic post-ganglionic neurones whose functional significance and transmitter mechanism is unknown.

Full text

PDF
71

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeberhard P. F., Magnenat L. D., Zimmermann W. A. Nervous control of migratory myoelectric complex of the small bowel. Am J Physiol. 1980 Feb;238(2):G102–G108. doi: 10.1152/ajpgi.1980.238.2.G102. [DOI] [PubMed] [Google Scholar]
  2. Ambache N., Freeman M. A. Atropine-resistant longitudinal muscle spasms due to excitation of non-cholinergic neurones in Auerbach's plexus. J Physiol. 1968 Dec;199(3):705–727. doi: 10.1113/jphysiol.1968.sp008674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrews P. L., Scratcherd T. The gastric motility patterns induced by direct and reflex excitation of the vagus nerves in the anaesthetized ferret. J Physiol. 1980 May;302:363–378. doi: 10.1113/jphysiol.1980.sp013248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bueno L., Fioramonti J., More J. Is there a functional large intestine in the ferret? Experientia. 1981 Mar 15;37(3):275–277. doi: 10.1007/BF01991652. [DOI] [PubMed] [Google Scholar]
  5. Bueno L., Fioramonti J., Ruckebusch Y. Rate of flow of digesta and electrical activity of the small intestine in dogs and sheep. J Physiol. 1975 Jul;249(1):69–85. doi: 10.1113/jphysiol.1975.sp011003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burnstock G. Autonomic innervation and transmission. Br Med Bull. 1979 Sep;35(3):255–262. doi: 10.1093/oxfordjournals.bmb.a071586. [DOI] [PubMed] [Google Scholar]
  7. Burnstock G., Cocks T., Paddle B., Staszewska-Barczak J. Evidence that prostaglandin is responsible for the 'rebound contraction' following stimulation of non-adrenergic, non-cholinergic ('purinergic') inhibitory nerves. Eur J Pharmacol. 1975 Apr;31(2):360–362. doi: 10.1016/0014-2999(75)90060-6. [DOI] [PubMed] [Google Scholar]
  8. Fleckenstein P., Oigaard A. Electrical spike activity in the human small intestine. A multiple electrode study of fasting diurnal variations. Am J Dig Dis. 1978 Sep;23(9):776–780. doi: 10.1007/BF01079785. [DOI] [PubMed] [Google Scholar]
  9. Hall K. E., El-Sharkawy T. Y., Diamant N. E. Vagal control of migrating motor complex in the dog. Am J Physiol. 1982 Oct;243(4):G276–G284. doi: 10.1152/ajpgi.1982.243.4.G276. [DOI] [PubMed] [Google Scholar]
  10. Itoh Z., Aizawa I., Takeuchi S. Neural regulation of interdigestive motor activity in canine jejunum. Am J Physiol. 1981 Apr;240(4):G324–G330. doi: 10.1152/ajpgi.1981.240.4.G324. [DOI] [PubMed] [Google Scholar]
  11. Linden R. J., Mary D. A., Weatherill D. The effect of cooling on transmission of impulses in vagal nerve fibres attached to atrial receptors in the dog. Q J Exp Physiol. 1981 Jul;66(3):321–332. doi: 10.1113/expphysiol.1981.sp002562. [DOI] [PubMed] [Google Scholar]
  12. Poddar S., Murgatroyd L. Effects of hypophysectomy and short- and long-term propylthiouracil treatment on the rat thyroid. Acta Anat (Basel) 1976;96(3):321–334. [PubMed] [Google Scholar]
  13. Szurszewski J. H. A migrating electric complex of canine small intestine. Am J Physiol. 1969 Dec;217(6):1757–1763. doi: 10.1152/ajplegacy.1969.217.6.1757. [DOI] [PubMed] [Google Scholar]
  14. Takewaki T., Ohashi O. Non-cholinergic excitatory transmission to intestinal smooth muscle cells. Nature. 1977 Aug 25;268(5622):749–750. doi: 10.1038/268749a0. [DOI] [PubMed] [Google Scholar]
  15. Tonini M., Frigo G., Lecchini S., D'Angelo L., Crema A. Hyoscine-resistant peristalsis in guinea-pig ileum. Eur J Pharmacol. 1981 May 22;71(4):375–381. doi: 10.1016/0014-2999(81)90181-3. [DOI] [PubMed] [Google Scholar]
  16. Weisbrodt N. W., Copeland E. M., Moore E. P., Kearley R. W., Johnson L. R. Effect of vagotomy on electrical activity of the small intestine of the dog. Am J Physiol. 1975 Feb;228(2):650–654. doi: 10.1152/ajplegacy.1975.228.2.650. [DOI] [PubMed] [Google Scholar]
  17. Wood J. D. Intrinsic neural control of intestinal motility. Annu Rev Physiol. 1981;43:33–51. doi: 10.1146/annurev.ph.43.030181.000341. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES