Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Nov;344:293–304. doi: 10.1113/jphysiol.1983.sp014940

Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat.

Y Julé, J Krier, J H Szurszewski
PMCID: PMC1193841  PMID: 6655582

Abstract

The patterns of peripheral and central synaptic input to non-spontaneous, irregular discharging and regular discharging neurones in the inferior mesenteric ganglion of the cat were studied in vitro using intracellular recording techniques. All three types of neurones in rostral and caudal lobes received central synaptic input primarily from L3 and L4 spinal cord segments. Since irregular discharging neurones received synaptic input from intraganglionic regular discharging neurones, some of the central input to irregular discharging neurones may have been relayed through the regular discharging neurones. In the rostral lobes of the ganglion, more than 70% of the non-spontaneous and irregular discharging neurones tested received peripheral synaptic input from the lumbar colonic, intermesenteric and left and right hypogastric nerves. Most of the regular discharging neurones tested received synaptic input from the intermesenteric and lumbar colonic nerves; none of the regular discharging neurones received synaptic input from the hypogastric nerves. Some of the peripheral synaptic input from the lumbar colonic and intermesenteric nerves to irregular discharging neurones may have been relayed through the regular discharging neurones. Axons of non-spontaneous and irregular discharging neurones located in the rostral lobes travelled to the periphery exclusively in the lumbar colonic nerves. Antidromic responses were not observed in regular discharging neurones during stimulation of any of the major peripheral nerve trunks. This suggests these neurones were intraganglionic. In the caudal lobes, irregular discharging neurones received a similar pattern of peripheral synaptic input as did irregular discharging neurones located in the rostral lobes. The majority of irregular discharging neurones in the caudal lobes projected their axons to the periphery through the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes, in contrast to those located in the rostral lobes, received peripheral synaptic input primarily from the hypogastric nerves. Axons of the majority of non-spontaneous neurones located in the caudal lobes travelled to the periphery through hypogastric nerves. The results suggest that non-spontaneous neurones and irregular discharging neurones in the rostral lobes and the majority of irregular discharging neurones in the caudal lobes transact and integrate neural commands destined for abdominal viscera supplied by the lumbar colonic nerves. Non-spontaneous neurones in the caudal lobes transact and integrate neural commands destined for pelvic viscera supplied by the hypogastric nerves.

Full text

PDF
297

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooksby G. A., Donald D. E. Sympathetic outflow from spinal cord to splanchnic circulation of the dog. Am J Physiol. 1970 Nov;219(5):1429–1433. doi: 10.1152/ajplegacy.1970.219.5.1429. [DOI] [PubMed] [Google Scholar]
  2. Bulygin I. A., Archakova L. I. Elektronnomikroskopicheskii analiz sinapsov zadnebryzheechnogo simpaticheskogo gangliia v afferentnom zvene simpaticheskikh refleksov. Neirofiziologiia. 1971 Jan-Feb;3(1):84–88. [PubMed] [Google Scholar]
  3. Crowcroft P. J., Szurszewski J. H. A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J Physiol. 1971 Dec;219(2):421–441. doi: 10.1113/jphysiol.1971.sp009670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Groat W. C., Krier J. The central control of the lumbar sympathetic pathway to the large intestine of the cat. J Physiol. 1979 Apr;289:449–468. doi: 10.1113/jphysiol.1979.sp012746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eccles J. C. The action potential of the superior cervical ganglion. J Physiol. 1935 Oct 26;85(2):179–206.2. doi: 10.1113/jphysiol.1935.sp003313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Garry R. C. The nervous control of the caudal region of the large bowel in the cat. J Physiol. 1933 Mar 15;77(4):422–431. doi: 10.1113/jphysiol.1933.sp002977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JOB C., LUNDBERG A. On the significance of post- and pre-synaptic events for facilitation and inhibition in the sympathetic ganglion of the cat. Acta Physiol Scand. 1953 Mar 31;28(1):14–28. doi: 10.1111/j.1748-1716.1953.tb00956.x. [DOI] [PubMed] [Google Scholar]
  8. Julé Y., Szurszewski J. H. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat. J Physiol. 1983 Nov;344:277–292. doi: 10.1113/jphysiol.1983.sp014939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kreulen D. L., Szurszewski J. H. Nerve pathways in celiac plexus of the guinea pig. Am J Physiol. 1979 Jul;237(1):E90–E97. doi: 10.1152/ajpendo.1979.237.1.E90. [DOI] [PubMed] [Google Scholar]
  10. Krier J., Schmalz P. F., Szurszewski J. H. Central innervation of neurones in the inferior mesenteric ganglion and of the large intestine of the cat. J Physiol. 1982 Nov;332:125–138. doi: 10.1113/jphysiol.1982.sp014405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Langley J. N., Anderson H. K. On the Innervation of the Pelvic and Adjoining Viscera: Part I. The Lower Portion of the Intestine. J Physiol. 1895 May 20;18(1-2):67–105. doi: 10.1113/jphysiol.1895.sp000558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Langley J. N. Note on Regeneration of Prae-Ganglionic Fibres of the Sympathetic. J Physiol. 1895 Jul 18;18(3):280–284. doi: 10.1113/jphysiol.1895.sp000566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Langley J. N. On axon-reflexes in the pre-ganglionic fibres of the sympathetic system. J Physiol. 1900 Aug 29;25(5):364–398. doi: 10.1113/jphysiol.1900.sp000803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lloyd D. P. The transmission of impulses through the inferior mesenteric ganglia. J Physiol. 1937 Dec 14;91(3):296–313. doi: 10.1113/jphysiol.1937.sp003561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Njå A., Purves D. Specific innervation of guinea-pig superior cervical ganglion cells by preganglionic fibres arising from different levels of the spinal cord. J Physiol. 1977 Jan;264(2):565–583. doi: 10.1113/jphysiol.1977.sp011683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nozdrachev A. D., Bezenkina G. I., Efimova N. I. Provodiashchie puti kaudal'nogo bryzheechnogo simpaticheskogo gangliia koshki. Fiziol Zh SSSR Im I M Sechenova. 1970 Apr;56(4):543–551. [PubMed] [Google Scholar]
  17. Perri V., Sacchi O., Casella C. Synaptically mediated potentials elicited by the stimulation of post-ganglionic trunks in the guinea-pig superior cervical ganglion. Pflugers Arch. 1970;314(1):55–67. doi: 10.1007/BF00587046. [DOI] [PubMed] [Google Scholar]
  18. SCHOFIELD G. C. Experimental studies on the innervation of the mucous membrane of the gut. Brain. 1960 Sep;83:490–514. doi: 10.1093/brain/83.3.490. [DOI] [PubMed] [Google Scholar]
  19. Sonnenschein R. R., Weissman M. L. Sympathetic vasomotor outflows to hindlimb muscles of the cat. Am J Physiol. 1978 Nov;235(5):H482–H487. doi: 10.1152/ajpheart.1978.235.5.H482. [DOI] [PubMed] [Google Scholar]
  20. Weems W. A., Szurszewski J. H. An intracellular analysis of some intrinsic factors controlling neural output from inferior mesenteric ganglion of guinea pigs. J Neurophysiol. 1978 Mar;41(2):305–321. doi: 10.1152/jn.1978.41.2.305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES