Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Oct;343:161–196. doi: 10.1113/jphysiol.1983.sp014887

Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye.

L Kovacs, E Rios, M F Schneider
PMCID: PMC1193914  PMID: 6606034

Abstract

Myoplasmic free calcium transients were monitored with the metallochromic indicator dye Antipyrylazo III (AP III) in single frog skeletal muscle fibres cut at both ends, stretched so as to minimize or eliminate contractile filament overlap and voltage clamped using a double-Vaseline-gap system (approximately 6 degrees C). The dye entered the central fibre segment by diffusion from the solution applied to the two cut ends. The diffusion coefficient of AP III was about 20 times lower in the fibre than in solution. This very slow diffusion was not due to binding of dye since the ratio of bound to free dye obtained from analysis of the diffusion was only about 0.45. For a given depolarizing pulse, the ratio of dye-related absorbance changes delta A at 720 and 550 nm was the same as that produced on adding calcium to dye in calibrating solution, indicating that these signals were due to changes in myoplasmic calcium. The delta A signals at 700 or 720 nm were used to monitor transient changes in concentration of calcium-dye complex [CaD2] and of free calcium [Ca] in the myofilament space. By applying the same pulse at different times during dye entry, it was observed that increasing dye concentrations [D]T produced the following effects: (a) [CaD2] was increased; (b) [Ca] was decreased at early times during a pulse; (c) a declining phase of [Ca] observed at late times during pulses was decreased and finally reversed to a slow rising phase at high [D]T; (d) the decay of [Ca] after the pulse was slowed. Analyses of the effects of [D]T on (a) the magnitude of [CaD2] at a given early time during the calcium release produced by pulses to a given voltage and on (b) the time constant for [Ca] decay after a pulse were both consistent with a calcium: dye stoichiometry of 1:2 in the fibre as found in calibrating solution. Analysis of the effect of [D]T on the [Ca] decay time constants also revealed the presence of intrinsic rapidly equilibrating myoplasmic calcium binding sites and provided the basis for obtaining estimates of the combined concentration [Ca] of free calcium plus calcium bound to such sites. Unlike the estimates of [Ca], these estimates of [Ca] are independent of the value of the calcium-dye dissociation constant.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
164

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylor S. M., Chandler W. K., Marshall M. W. Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres. J Physiol. 1982 Oct;331:105–137. doi: 10.1113/jphysiol.1982.sp014367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baylor S. M., Chandler W. K., Marshall M. W. Use of metallochromic dyes to measure changes in myoplasmic calcium during activity in frog skeletal muscle fibres. J Physiol. 1982 Oct;331:139–177. doi: 10.1113/jphysiol.1982.sp014368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beeler T. J., Schibeci A., Martonosi A. The binding of arsenazo III to cell components. Biochim Biophys Acta. 1980 May 7;629(2):317–327. doi: 10.1016/0304-4165(80)90104-x. [DOI] [PubMed] [Google Scholar]
  4. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  5. Chandler W. K., Rakowski R. F., Schneider M. F. A non-linear voltage dependent charge movement in frog skeletal muscle. J Physiol. 1976 Jan;254(2):245–283. doi: 10.1113/jphysiol.1976.sp011232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dipolo R., Requena J., Brinley F. J., Jr, Mullins L. J., Scarpa A., Tiffert T. Ionized calcium concentrations in squid axons. J Gen Physiol. 1976 Apr;67(4):433–467. doi: 10.1085/jgp.67.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fabiato A., Fabiato F. Effects of magnesium on contractile activation of skinned cardiac cells. J Physiol. 1975 Aug;249(3):497–517. doi: 10.1113/jphysiol.1975.sp011027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Harafuji H., Ogawa Y. Re-examination of the apparent binding constant of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid with calcium around neutral pH. J Biochem. 1980 May;87(5):1305–1312. doi: 10.1093/oxfordjournals.jbchem.a132868. [DOI] [PubMed] [Google Scholar]
  9. Kovács L., Ríos E., Schneider M. F. Calcium transients and intramembrane charge movement in skeletal muscle fibres. Nature. 1979 May 31;279(5712):391–396. doi: 10.1038/279391a0. [DOI] [PubMed] [Google Scholar]
  10. Kovács L., Schneider M. F. Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres. J Physiol. 1978 Apr;277:483–506. doi: 10.1113/jphysiol.1978.sp012286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kovács L., Schneider M. F. Increased optical transparency associated with excitation--contraction coupling in voltage-clamped cut skeletal muscle fibres. Nature. 1977 Feb 10;265(5594):556–560. doi: 10.1038/265556a0. [DOI] [PubMed] [Google Scholar]
  12. Miledi R., Parker I., Schalow G. Measurement of calcium transients in frog muscle by the use of arsenazo III. Proc R Soc Lond B Biol Sci. 1977 Aug 22;198(1131):201–210. doi: 10.1098/rspb.1977.0094. [DOI] [PubMed] [Google Scholar]
  13. Palade P., Vergara J. Arsenazo III and antipyrylazo III calcium transients in single skeletal muscle fibers. J Gen Physiol. 1982 Apr;79(4):679–707. doi: 10.1085/jgp.79.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ríos E., Schneider M. F. Stoichiometry of the reactions of calcium with the metallochromic indicator dyes antipyrylazo III and arsenazo III. Biophys J. 1981 Dec;36(3):607–621. doi: 10.1016/S0006-3495(81)84755-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Scarpa A., Brinley F. J., Jr, Dubyak G. Antipyrylazo III, a "middle range" Ca2+ metallochromic indicator. Biochemistry. 1978 Apr 18;17(8):1378–1386. doi: 10.1021/bi00601a004. [DOI] [PubMed] [Google Scholar]
  17. Thomas M. V. Arsenazo III forms 2:1 complexes with Ca and 1:1 complexes with Mg under physiological conditions. Estimates of the apparent dissociation constants. Biophys J. 1979 Mar;25(3):541–548. doi: 10.1016/S0006-3495(79)85322-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vergara J., Bezanilla F., Salzberg B. M. Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions. J Gen Physiol. 1978 Dec;72(6):775–800. doi: 10.1085/jgp.72.6.775. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES