Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1958 Jun;69(2):173–181. doi: 10.1042/bj0690173

Oxidation of fatty acids by cell-free extracts of a vibrio

A G Callely 1, S Dagley 1, B Hodgson 1
PMCID: PMC1196535  PMID: 13546163

Full text

PDF
176

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANTRENNE H., LIPMANN F. Coenzyme A dependence and acetyl donor function of the pyruvate-formate exchange system. J Biol Chem. 1950 Dec;187(2):757–767. [PubMed] [Google Scholar]
  2. DAGLEY S., FEWSTER E., HAPPOLD F. C. The bacterial oxidation of phenylacetic acid. J Bacteriol. 1952 Mar;63(3):327–336. doi: 10.1128/jb.63.3.327-336.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAGLEY S., JOHNSON A. R. Appearance of amino acids and peptides in culture filtrates of micro-organisms growing in mineral salt media. Biochim Biophys Acta. 1956 Aug;21(2):270–276. doi: 10.1016/0006-3002(56)90007-5. [DOI] [PubMed] [Google Scholar]
  4. DAGLEY S. Oxidation of octanoic acid by cell-free bacterial extracts. Nature. 1956 Jun 16;177(4520):1131–1132. doi: 10.1038/1771131a0. [DOI] [PubMed] [Google Scholar]
  5. DAGLEY S., PATEL M. D. Excretion of alpha-ketoglutaric acid during oxidation of acetate by a Vibrio. Biochim Biophys Acta. 1955 Mar;16(3):418–423. doi: 10.1016/0006-3002(55)90247-x. [DOI] [PubMed] [Google Scholar]
  6. DAGLEY S., RODGERS A. The citric acid cycle and bacterial oxidation of aromatic acids. J Bacteriol. 1953 Nov;66(5):620–620. doi: 10.1128/jb.66.5.620-620.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAGLEY S., WALKER J. R. Accumulation of citrate and pyruvate during growth of a vibrio in the presence of fluoroacetate. Biochim Biophys Acta. 1956 Sep;21(3):441–447. doi: 10.1016/0006-3002(56)90180-9. [DOI] [PubMed] [Google Scholar]
  8. HUGHES D. E. A press for disrupting bacteria and other micro-organisms. Br J Exp Pathol. 1951 Apr;32(2):97–109. [PMC free article] [PubMed] [Google Scholar]
  9. IVLER D., WOLFE J. B., RITTENBERG S. C. Studies on the aerobic oxidation of fatty acids by bacteria. V. Caprate oxidation by cell-free extracts of Pseudomonas fluorescens. J Bacteriol. 1955 Jul;70(1):99–103. doi: 10.1128/jb.70.1.99-103.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KENNEDY E. P., BARKER H. A. Butyrate oxidation in the absence of inorganic phosphate by Clostridium kluyveri. J Biol Chem. 1951 Jul;191(1):419–438. [PubMed] [Google Scholar]
  11. KERBS H. A., GURIN S., EGGLESTON L. V. The pathway of oxidation of acetate in baker's yeast. Biochem J. 1952 Aug;51(5):614–628. doi: 10.1042/bj0510614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KORNBERG H. L., KREBS H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957 May 18;179(4568):988–991. doi: 10.1038/179988a0. [DOI] [PubMed] [Google Scholar]
  13. KORNBERG H. L., MADSEN N. B. Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle. Biochim Biophys Acta. 1957 Jun;24(3):651–653. doi: 10.1016/0006-3002(57)90268-8. [DOI] [PubMed] [Google Scholar]
  14. LIEBERMAN I., BARKER H. A. Beta-keto acid formation and decomposition by preparations of Clostridium kluyveri. J Bacteriol. 1954 Sep;68(3):329–333. doi: 10.1128/jb.68.3.329-333.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LYNEN F. Participation of coenzyme A in the oxidation of fat. Nature. 1954 Nov 20;174(4438):962–965. doi: 10.1038/174962a0. [DOI] [PubMed] [Google Scholar]
  16. Markham R. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem J. 1942 Dec;36(10-12):790–791. doi: 10.1042/bj0360790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SAZ H. J., HILLARY E. P. The formation of glyoxylate and succinate from tricarboxylic acids by Pseudomonas aeruginosa. Biochem J. 1956 Apr;62(4):563–569. doi: 10.1042/bj0620563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SILLIKER J. H., RITTENBERG S. C. Studies on the aerobic oxidation of fatty acids by bacteria. II. Application of the technique of simultaneous adaptation to the study of the mechanism of fatty acid oxidation in Serratia marcescens. J Bacteriol. 1951 Jun;61(6):661–673. doi: 10.1128/jb.61.6.661-673.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SILLIKER J. H., RITTENBERG S. C. Studies on the aerobic oxidation of fatty acids by bacteria. III. The effect of 2,4-dinitrophenol on the oxidation of fatty acids by Serratia marcescens. J Bacteriol. 1952 Aug;64(2):197–205. doi: 10.1128/jb.64.2.197-205.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SMITH R. A., GUNSALUS I. C. Distribution and formation of isocitritase. Nature. 1955 Apr 30;175(4461):774–775. doi: 10.1038/175774b0. [DOI] [PubMed] [Google Scholar]
  21. STADTMAN E. R., STADTMAN T. C. Metabolisms of microorganisms. Annu Rev Microbiol. 1953;7:143–178. doi: 10.1146/annurev.mi.07.100153.001043. [DOI] [PubMed] [Google Scholar]
  22. STICKLAND L. H. The determination of small quantities of bacteria by means of the biuret reaction. J Gen Microbiol. 1951 Oct;5(4):698–703. doi: 10.1099/00221287-5-4-698. [DOI] [PubMed] [Google Scholar]
  23. STONE R. W., WILSON P. W. Respiratory activity of cell-free extracts from azotobacter. J Bacteriol. 1952 May;63(5):605–617. doi: 10.1128/jb.63.5.605-617.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SWIM H. E., KRAMPITZ L. O. Acetic acid oxidation by Escherichia coli; evidence for the occurrence of a tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):419–425. doi: 10.1128/jb.67.4.419-425.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WEBLEY D. M., DUFF R. B., FARMER V. C. Beta-oxidation of fatty acids by Nocardia opaca. J Gen Microbiol. 1955 Oct;13(2):361–369. doi: 10.1099/00221287-13-2-361. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES