Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1959 Feb;71(2):400–407. doi: 10.1042/bj0710400

Free-energy changes of the glutaminase reaction and the hydrolysis of the terminal pyrophosphate bond of adenosine triphosphate

T Benzinger 1,2, C Kitzinger 1,2, R Hems 1,2, K Burton 1,2
PMCID: PMC1196804  PMID: 13628584

Full text

PDF
403

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERT A. Quantitative studies of the avidity of naturally occurring substances for trace metals. II. Amino-acids having three ionizing groups. Biochem J. 1952 Mar;50(5):690–697. doi: 10.1042/bj0500690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOYER P. D., ROBBINS E. A. Determination of the equilibrium of the hexokinase reaction and the free energy of hydrolysis of adenosine triphosphate. J Biol Chem. 1957 Jan;224(1):121–135. [PubMed] [Google Scholar]
  3. BURTON K. Energy of adenosine triphosphate. Nature. 1958 Jun 7;181(4623):1594–1595. doi: 10.1038/1811594a0. [DOI] [PubMed] [Google Scholar]
  4. BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BURTON K., KREBS H. A. The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem J. 1953 Apr;54(1):94–107. doi: 10.1042/bj0540094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benzinger T. H., Hems R. REVERSIBILITY AND EQUILIBRIUM OF THE GLUTAMINASE REACTION OBSERVED CALORIMETRICALLY TO FIND THE FREE ENERGY OF ADENOSINE TRIPHOSPHATE HYDROLYSIS. Proc Natl Acad Sci U S A. 1956 Dec;42(12):896–900. doi: 10.1073/pnas.42.12.896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CLARKE H. B., CUSWORTH D. C., DATTA S. P. Thermodynamic quantities for the dissociation equilibria of biologically important compounds. 3. The dissociations of the magnesium salts of phosphoric acid, glucose 1-phosphoric acid and glycerol 2-phosphoric acid. Biochem J. 1954 Sep;58(1):146–154. doi: 10.1042/bj0580146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUGHES D. E., WILLIAMSON D. H. Some properties of the glutaminase of Clostridium welchii. Biochem J. 1952 Apr;51(1):45–55. doi: 10.1042/bj0510045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KITZINGER C., HEMS R. Enthalpies of hydrolysis of glutamine and asparagine and of ionization of glutamic and aspartic acids. Biochem J. 1959 Feb;71(2):395–400. doi: 10.1042/bj0710395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LEVINTOW L., MEISTER A. Reversibility of the enzymatic synthesis of glutamine. J Biol Chem. 1954 Jul;209(1):265–280. [PubMed] [Google Scholar]
  11. MORALES M. F., BOTTS J., BLUM J. J., HILL T. L. Elementary processes in muscle action: an examination of current concepts. Physiol Rev. 1955 Jul;35(3):475–505. doi: 10.1152/physrev.1955.35.3.475. [DOI] [PubMed] [Google Scholar]
  12. PODOLSKY R. J., MORALES M. F. The enthalpy change of adenosine triphosphate hydrolysis. J Biol Chem. 1956 Feb;218(2):945–959. [PubMed] [Google Scholar]
  13. Varner J. E., Webster G. C. Studies on the Enzymatic Synthesis of Glutamine. Plant Physiol. 1955 Sep;30(5):393–402. doi: 10.1104/pp.30.5.393. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES