Abstract
1. The effects of the barbiturate anaesthetics, pentobarbitone and thiopentone, on the membrane properties and the γ-aminobutyric acid (GABA)-induced responses of cat primary afferent neurones were studied with intracellular recording and voltageclamp techniques.
2. At low concentrations (10-7-10-5 M) both barbiturates slightly enhanced and prolonged GABA-induced depolarizations or currents without affecting the membrane properties. At these concentrations, barbiturates have no effect on the apparent dissociation constant of the GABA-GABA receptor interaction or the reversal potential for GABA-induced depolarizations or currents.
3. At high concentrations (10-4-10-3 M) barbiturates produced a few millivolts reduction in the resting membrane potential. Voltage-clamp analysis revealed that the depolarization was associated with one of the three types of conductance change, i.e., an initial increase followed by a decrease (40% of neurones examined), only an increase (40%) and only a decrease (20%).
4. Analysis in different ionic media indicated that the depolarization with a reduced membrane resistance is associated with an increased chloride conductance and that the one with an increased membrane resistance is accompanied by a reduction in potassium conductance. Bath-application of GABA (10-3 M) or picrotoxin (10-5 M) inhibited the increase in chloride conductance but not the reduction in potassium conductance.
5. Barbiturates at these high concentrations initially caused a marked augmentation and prolongation of GABA responses; this was followed by a depression. The depressant action did not appear to be voltage-dependent. These actions of barbiturates were not accompanied by changes in the apparent dissociation constant of the GABA-current dose—response curve or the reversal potential for GABA currents. In addition, the single exponential decay of GABA current was not changed despite a marked prolongation of its decay time.
6. Picrotoxin (10-5 M) antagonized the depressant effect of barbiturates at high concentrations on GABA currents, and barbiturates (5 × 10-6 M) reduced the inhibitory action of picrotoxin (5 × 10-6 M) on the GABA-currents.
7. From all these results, it is suggested that the site of barbiturate actions on GABA-responses is mainly the allosteric site (the ionic conductance regulatory subunit) but not the agonist recognition site or the chloride channels linked with GABA receptors.
Full text
PDF![299](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/92ab7a165a86/jphysiol00669-0314.png)
![300](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/30eb51624ea9/jphysiol00669-0315.png)
![301](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/2e5b44b8b846/jphysiol00669-0316.png)
![302](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/b76a2b7a8273/jphysiol00669-0317.png)
![303](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/830fc005cd36/jphysiol00669-0318.png)
![304](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/36864aceb181/jphysiol00669-0319.png)
![305](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/b3f1add91428/jphysiol00669-0320.png)
![306](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/7625c27819fb/jphysiol00669-0321.png)
![307](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/531e7848bdcf/jphysiol00669-0322.png)
![308](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/25e999554d4c/jphysiol00669-0323.png)
![309](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/4926f64a3b50/jphysiol00669-0324.png)
![310](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/6a3566ce9a24/jphysiol00669-0325.png)
![311](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/bbbfe5ebcf23/jphysiol00669-0326.png)
![312](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/3efd1ebc2deb/jphysiol00669-0327.png)
![313](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/1aef3d07b6e6/jphysiol00669-0328.png)
![314](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a6/1197399/a05b36911649/jphysiol00669-0329.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. R. Acetylcholine receptor kinetics. J Membr Biol. 1981 Feb 28;58(3):161–174. doi: 10.1007/BF01870902. [DOI] [PubMed] [Google Scholar]
- Aickin C. C., Deisz R. A. Pentobarbitone interference with inhibitory synaptic transmission in crayfish stretch receptor neurones. J Physiol. 1981 Jun;315:175–187. doi: 10.1113/jphysiol.1981.sp013740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. L., McBurney R. N. Phenobarbitone modulation of postsynaptic GABA receptor function on cultured mammalian neurons. Proc R Soc Lond B Biol Sci. 1979 Dec 31;206(1164):319–327. doi: 10.1098/rspb.1979.0108. [DOI] [PubMed] [Google Scholar]
- Barker J. L., Ransom B. R. Pentobarbitone pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:355–372. doi: 10.1113/jphysiol.1978.sp012388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P. Barbiturates block calcium uptake by stimulated and potassium-depolarized rat sympathetic ganglia. J Pharmacol Exp Ther. 1976 Jan;196(1):80–86. [PubMed] [Google Scholar]
- Bowery N. G., Dray A. Barbiturate reversal of amino acid antagonism produced by convulsant agents. Nature. 1976 Nov 18;264(5583):276–278. doi: 10.1038/264276a0. [DOI] [PubMed] [Google Scholar]
- Bowery N. G., Dray A. Reversal of the action of amino acid antagonists by barbiturates and other hypnotic drugs. Br J Pharmacol. 1978 May;63(1):197–215. doi: 10.1111/j.1476-5381.1978.tb07790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. A., Galvan M. Influence of neuroglial transport on the action of gamma-aminobutyric acid on mammalian ganglion cells. Br J Pharmacol. 1977 Feb;59(2):373–378. doi: 10.1111/j.1476-5381.1977.tb07502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connors B. W. A comparison of the effects of pentobarbital and diphenylhydantoin on the GABA sensitivity and excitability of adult sensory ganglion cells. Brain Res. 1981 Mar 2;207(2):357–369. doi: 10.1016/0006-8993(81)90370-x. [DOI] [PubMed] [Google Scholar]
- Deschenes M., Feltz P., Lamour Y. A model for an estimate in vivo of the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Brain Res. 1976 Dec 24;118(3):486–493. doi: 10.1016/0006-8993(76)90318-8. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C., SCHMIDT R., WILLIS W. D. PHARMACOLOGICAL STUDIES ON PRESYNAPTIC INHIBITION. J Physiol. 1963 Oct;168:500–530. doi: 10.1113/jphysiol.1963.sp007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans R. H. Potentiation of the effects of GABA by pentobarbitone. Brain Res. 1979 Jul 27;171(1):113–120. doi: 10.1016/0006-8993(79)90736-4. [DOI] [PubMed] [Google Scholar]
- Feltz P., Rasminsky M. A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. Neuropharmacology. 1974 Jun;13(6):553–563. doi: 10.1016/0028-3908(74)90145-2. [DOI] [PubMed] [Google Scholar]
- Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ginsborg B. L., Kado R. T. Voltage-current relationship of a carbachol-induced potassium-ion pathway in Aplysia neurones. J Physiol. 1975 Mar;245(3):713–725. doi: 10.1113/jphysiol.1975.sp010870. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haycock J. W., Levy W. B., Cotman C. W. Pentobarbital depression of stimulus-secretion coupling in brain--selective inhibition of depolarization-induced calcium-dependent release. Biochem Pharmacol. 1977 Jan 15;26(2):159–161. doi: 10.1016/0006-2952(77)90389-6. [DOI] [PubMed] [Google Scholar]
- LOYNING Y., OSHIMA T., YOKOTA T. SITE OF ACTION OF THIAMYLAL SODIUM ON THE MONOSYNAPTIC SPINAL REFLEX PATHWAY IN CATS. J Neurophysiol. 1964 May;27:408–428. doi: 10.1152/jn.1964.27.3.408. [DOI] [PubMed] [Google Scholar]
- Mathers D. A., Barker J. L. (-)Pentobarbital opens ion channels of long duration in cultured mouse spinal neurons. Science. 1980 Jul 25;209(4455):507–509. doi: 10.1126/science.6248961. [DOI] [PubMed] [Google Scholar]
- Nicoll R. A. Presynaptic action of barbiturates in the frog spinal cord. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1460–1463. doi: 10.1073/pnas.72.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicoll R. A., Wojtowicz J. M. The effects of pentobarbital and related compounds on frog motoneurons. Brain Res. 1980 Jun 2;191(1):225–237. doi: 10.1016/0006-8993(80)90325-x. [DOI] [PubMed] [Google Scholar]
- Nishi S., Minota S., Karczmar A. G. Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization. Neuropharmacology. 1974 Mar;13(3):215–219. doi: 10.1016/0028-3908(74)90110-5. [DOI] [PubMed] [Google Scholar]
- Olsen R. W., Leeb-Lundberg F. Convulsant and anticonvulsant drug binding sites related to GABA-regulated chloride ion channels. Adv Biochem Psychopharmacol. 1981;26:93–102. [PubMed] [Google Scholar]
- Richards C. D. On the mechanism of barbiturate anaesthesia. J Physiol. 1972 Dec;227(3):749–767. doi: 10.1113/jphysiol.1972.sp010057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHMIDT R. F. PHARMACOLOGICAL STUDIES ON THE PRIMARY AFFERENT DEPOLARIZATION OF THE TOAD SPINAL CORD. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963 Jul 2;277:325–346. doi: 10.1007/BF00362515. [DOI] [PubMed] [Google Scholar]
- Somjen G. Effects of anesthetics on spinal cord of mammals. Anesthesiology. 1967 Jan-Feb;28(1):135–143. doi: 10.1097/00000542-196701000-00015. [DOI] [PubMed] [Google Scholar]
- Ticku M. K., Olsen R. W. Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sci. 1978 May 8;22(18):1643–1651. doi: 10.1016/0024-3205(78)90061-9. [DOI] [PubMed] [Google Scholar]
- Weakly J. N. Effect of barbiturates on 'quantal' synaptic transmission in spinal motoneurones. J Physiol. 1969 Sep;204(1):63–77. doi: 10.1113/jphysiol.1969.sp008898. [DOI] [PMC free article] [PubMed] [Google Scholar]