Abstract
1. The light peak is a large light-induced change in the DC potential across the eye (standing potential) that reaches its maximum in 5-13 min in mammals. The light peak of the intact cat eye was studied in order to define its cellular origin and stimulus—response characteristics. Direct-coupled recordings were made with a vitreal electrode and also with intraretinal and intracellular micro-electrodes. Light peaks were generally evoked with 300 sec periods of diffuse white illumination.
2. Micro-electrode recordings made in the subretinal space just outside the apical membrane of the retinal pigment epithelium (r.p.e.) showed that the light peak was a change in trans-epithelial potential. No component was generated in the neural retina.
3. Intracellular recordings from r.p.e. cells showed that the change in trans-epithelial potential resulted from a depolarization of the basal membrane (facing the choroid). This depolarization came after the hyperpolarization of the apical membrane that gave rise to the r.p.e. component of the c-wave of the e.r.g.
4. The light peak amplitude at a constant retinal illumination was nearly linear with stimulus duration over the range 15-180 sec, and saturated at about 300 sec. The time-to-peak remained nearly constant at about 300 sec over this range. Large light peaks could be evoked with flashes as short as 10 sec if the retinal illumination was several log units above rod saturation.
5. When stimulus duration was held constant at 300 sec, light peak amplitude was graded with illumination over a wide range, from 3 log units below to 2 log units above rod saturation. The threshold of the light peak was below that of the e.r.g. and only about 1·5-2·5 log units above the absolute threshold of the most sensitive ganglion cells. The increase of light peak amplitude above rod saturation was not due primarily to cones.
6. The trans-epithelial light peak had an unusual dependence on stimulus area, being at least twice as large in response to diffuse light as it was in response to a large spot (10 deg diameter) of the same retinal illumination.
7. These findings indicate that the light peak represents a normal physiological interaction between the retina and the r.p.e. They also suggest that the interaction involves a change in the concentration of a diffusible substance in the retina, which then either enters the r.p.e. itself, or triggers an internal messenger to cause the basal depolarization.
Full text
PDF




















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARDEN G. B., KELSEY J. H. Changes produced by light in the standing potential of the human eye. J Physiol. 1962 May;161:189–204. doi: 10.1113/jphysiol.1962.sp006881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ARDEN G. B., KELSEY J. H. Some observations on the relationship between the standing potential of the human eye and the bleaching and regeneration of visual purple. J Physiol. 1962 May;161:205–226. doi: 10.1113/jphysiol.1962.sp006882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Afanador A. J., Andrews C. E. Rod and cone contribution to the EOG ratio. Am J Optom Physiol Opt. 1978 Feb;55(2):101–107. doi: 10.1097/00006324-197802000-00007. [DOI] [PubMed] [Google Scholar]
- BARLOW H. B. Increment thresholds at low intensities considered as signal/noise discriminations. J Physiol. 1957 May 23;136(3):469–488. doi: 10.1113/jphysiol.1957.sp005774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN K. T. OPTICAL STIMULATOR, MICROELECTRODE ADVANCER, AND ASSOCIATED EQUIPMENT FOR INTRARETINAL NEUROPHYSIOLOGY IN CLOSED MAMMALIAN EYES. J Opt Soc Am. 1964 Jan;54:101–109. doi: 10.1364/josa.54.000101. [DOI] [PubMed] [Google Scholar]
- BROWN K. T., WIESEL T. N. Analysis of the intraretinal electroretinogram in the intact cat eye. J Physiol. 1961 Sep;158:229–256. doi: 10.1113/jphysiol.1961.sp006767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown K. T., Flaming D. G. Instrumentation and technique for beveling fine micropipette electrodes. Brain Res. 1975 Mar 14;86(1):172–180. doi: 10.1016/0006-8993(75)90652-6. [DOI] [PubMed] [Google Scholar]
- Brown K. T. The eclectroretinogram: its components and their origins. Vision Res. 1968 Jun;8(6):633–677. doi: 10.1016/0042-6989(68)90041-2. [DOI] [PubMed] [Google Scholar]
- Daw N. W., Pearlman A. L. Cat colour vision: evidence for more than one cone process. J Physiol. 1970 Nov;211(1):125–137. doi: 10.1113/jphysiol.1970.sp009270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elenius V., Aantaa E. Light-induced increase in amplitude of electro-oculogram. Evoked with blue and red lights in totally color-blind and normal humans. Arch Ophthalmol. 1973 Jul;90(1):60–63. doi: 10.1001/archopht.1973.01000050062013. [DOI] [PubMed] [Google Scholar]
- Enroth-Cugell C., Hertz G., Lennie P. Cone signals in the cat's retina. J Physiol. 1977 Jul;269(2):273–296. doi: 10.1113/jphysiol.1977.sp011902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOURAS P., CARR R. E. CONE ACTIVITY IN THE LIGHT-INDUCED DC RESPONSE OF MONKEY RETINA. Invest Ophthalmol. 1965 Jun;4:318–321. [PubMed] [Google Scholar]
- GOURAS P., CARR R. E. LIGHT-INDUCED DC RESPONSES OF MONKEY RETINA BEFORE AND AFTER CENTRAL RETINAL ARTERY INTERRUPTION. Invest Ophthalmol. 1965 Jun;4:310–317. [PubMed] [Google Scholar]
- Granit R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J Physiol. 1933 Feb 8;77(3):207–239. doi: 10.1113/jphysiol.1933.sp002964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griff E. R., Steinberg R. H. Origin of the light peak: in vitro study of Gekko gekko. J Physiol. 1982 Oct;331:637–652. doi: 10.1113/jphysiol.1982.sp014395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding T. H., Enroth-Cugell C. Absolute dark sensitivity and center size in cat retinal ganglion cells. Brain Res. 1978 Sep 15;153(1):157–162. doi: 10.1016/0006-8993(78)91138-1. [DOI] [PubMed] [Google Scholar]
- Hochgesand P. Das Elektro-Okulogramm der zentralen Retina. Buch Augenarzt. 1978;72:161–173. [PubMed] [Google Scholar]
- Kikawada N. Variations in the corneo-retinal standing potential of the vertebrate eye during light and dark adaptations. Jpn J Physiol. 1968 Dec 15;18(6):687–702. doi: 10.2170/jjphysiol.18.687. [DOI] [PubMed] [Google Scholar]
- Kolder H., Brecher G. A. Fast oscillations of the corneoretinal potential in man. Arch Ophthalmol. 1966 Feb;75(2):232–237. doi: 10.1001/archopht.1966.00970050234017. [DOI] [PubMed] [Google Scholar]
- Kolder H., North A. W. Oscillations of the corneo-retinal potential in animals. Ophthalmologica. 1966;152(2):149–160. doi: 10.1159/000304963. [DOI] [PubMed] [Google Scholar]
- LaMotte R. H., Brown J. L. Dark adaptation and spectral sensitivity in the cat. Vision Res. 1970 Aug;10(8):703–716. doi: 10.1016/0042-6989(70)90017-9. [DOI] [PubMed] [Google Scholar]
- Lennie P., Hertz B. G., Enroth-Cugell C. Saturation of rod pools in cat. Vision Res. 1976;16(9):935–940. doi: 10.1016/0042-6989(76)90223-6. [DOI] [PubMed] [Google Scholar]
- Matsuura T., Miller W. H., Tomita T. Cone-specific c-wave in the turtle retina. Vision Res. 1978;18(7):767–775. doi: 10.1016/0042-6989(78)90115-3. [DOI] [PubMed] [Google Scholar]
- Miller S. S., Steinberg R. H. Passive ionic properties of frog retinal pigment epithelium. J Membr Biol. 1977 Sep 15;36(4):337–372. doi: 10.1007/BF01868158. [DOI] [PubMed] [Google Scholar]
- Nikara T., Sato S., Takamatsu T., Sato R., Mita T. A new wave (2nd c-wave) on corneoretinal potential. Experientia. 1976 May 15;32(5):594–596. doi: 10.1007/BF01990182. [DOI] [PubMed] [Google Scholar]
- Oakley B., 2nd, Flaming D. G., Brown K. T. Effects of the rod receptor potential upon retinal extracellular potassium concentration. J Gen Physiol. 1979 Dec;74(6):713–737. doi: 10.1085/jgp.74.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakley B., 2nd, Green D. G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J Neurophysiol. 1976 Sep;39(5):1117–1133. doi: 10.1152/jn.1976.39.5.1117. [DOI] [PubMed] [Google Scholar]
- Oakley B., 2nd, Miller S. S., Steinberg R. H. Effect of intracellular potassium upon the electrogenic pump of frog retinal pigment epithelium. J Membr Biol. 1978 Dec 29;44(3-4):281–307. doi: 10.1007/BF01944225. [DOI] [PubMed] [Google Scholar]
- Oakley B., 2nd Potassium and the photoreceptor-dependent pigment epithelial hyperpolarization. J Gen Physiol. 1977 Oct;70(4):405–425. doi: 10.1085/jgp.70.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodieck R. W. Components of the electroretinogram--a reappraisal. Vision Res. 1972 May;12(5):773–780. doi: 10.1016/0042-6989(72)90003-x. [DOI] [PubMed] [Google Scholar]
- Schmidt R., Steinberg R. H. Rod-dependent intracellular responses to light recorded from the pigment epithelium of the cat retina. J Physiol. 1971 Aug;217(1):71–91. doi: 10.1113/jphysiol.1971.sp009560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg R. H. Comparison of the intraretinal b-wave and d.c. component in the area centralis of cat retina. Vision Res. 1969 Mar;9(3):317–331. doi: 10.1016/0042-6989(69)90079-0. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H., Miller S. S., Stern W. H. Initial observations on the isolated retinal pigment epithelium-choroid of the cat. Invest Ophthalmol Vis Sci. 1978 Jul;17(7):675–678. [PubMed] [Google Scholar]
- Steinberg R. H., Miller S. Aspects of electrolyte transport in frog pigment epithelium. Exp Eye Res. 1973 Aug 24;16(5):365–372. doi: 10.1016/0014-4835(73)90130-9. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H., Niemeyer G. Light peak of cat DC electroretinogram: not generated by a change in [K+]0. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):415–418. [PubMed] [Google Scholar]
- Steinberg R. H., Oakley B., 2nd, Niemeyer G. Light-evoked changes in [K+]0 in retina of intact cat eye. J Neurophysiol. 1980 Nov;44(5):897–921. doi: 10.1152/jn.1980.44.5.897. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H. Rod and cone contributions to S-potentials from the cat retina. Vision Res. 1969 Nov;9(11):1319–1329. doi: 10.1016/0042-6989(69)90069-8. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H., Schmidt R., Brown K. T. Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature. 1970 Aug 15;227(5259):728–730. doi: 10.1038/227728a0. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H. The rod after-effect in S-potentials from the cat retina. Vision Res. 1969 Nov;9(11):1345–1355. doi: 10.1016/0042-6989(69)90071-6. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H., Walker M. L., Johnson W. M. A new microelectrode positioner for intraretinal recording from the intact mammalian eye. Vision Res. 1968 Dec;8(12):1521–1523. doi: 10.1016/0042-6989(68)90126-0. [DOI] [PubMed] [Google Scholar]
- Täumer R., Hennig J., Wolff L. Further investigations concerning the fast oscillation of the retinal potential. Bibl Ophthalmol. 1976;(85):57–67. [PubMed] [Google Scholar]
- Valeton J. M., van Norren D. Intraretinal recordings of slow electrical responses to steady illumination in monkey: isolation of receptor responses and the origin of the light peak. Vision Res. 1982;22(3):393–399. doi: 10.1016/0042-6989(82)90155-9. [DOI] [PubMed] [Google Scholar]
- Witkovsky P., Dudek F. E., Ripps H. Slow PIII component of the carp electroretinogram. J Gen Physiol. 1975 Feb;65(2):119–134. doi: 10.1085/jgp.65.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
