Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1967 Nov;105(2):837–842. doi: 10.1042/bj1050837

The aminoethylphosphonate-containing lipids of rumen protozoa

R M C Dawson 1, P Kemp 1
PMCID: PMC1198385  PMID: 4967076

Abstract

1. A method is presented for identifying and estimating the aminoethylphosphonate (ciliatine)-containing phospholipids in a complex mixture. 2. Evidence was obtained that the phospholipids of a pure culture of Entodinium caudatum and a mixed rumen protozoa sample contain diglyceride ciliatine, and a plasmalogen ciliatine was detected in the latter. 3. A ninhydrin-positive sphingolipid was isolated from rumen protozoa. Although chromatographically homogeneous on silica gel it contains two components, which were provisionally identified as ceramide ciliatine and ceramide phosphorylethanolamine. 4. A detailed phospholipid analysis of E. caudatum and rumen protozoa is presented. They contain no phosphatidylserine or cardiolipin, but an unidentified phosphoglyceride containing a zwitterionic amino acid is present.

Full text

PDF
842

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAER E., STANACEY N. Z. PHOSPHONOLIPIDS. I. SYNTHESIS OF A PHOSPHONIC ACID ANALOGUE OF CEPHALIN. J Biol Chem. 1964 Oct;239:3209–3214. [PubMed] [Google Scholar]
  2. Bridges R. G., Ricketts J. Formation of a phosphonolipid by larvae of the housefly, Musca domestica. Nature. 1966 Jul 9;211(5045):199–200. doi: 10.1038/211199a0. [DOI] [PubMed] [Google Scholar]
  3. COLEMAN G. S. Maintenance of oligotrich protozoa from the sheep rumen in vitro. Nature. 1958 Oct 18;182(4642):1104–1105. doi: 10.1038/1821104a0. [DOI] [PubMed] [Google Scholar]
  4. COLEMAN G. S. The preparation and survival of almost bacteria-free suspensions of Entodinium caudatum. J Gen Microbiol. 1962 Jun;28:271–281. doi: 10.1099/00221287-28-2-271. [DOI] [PubMed] [Google Scholar]
  5. CRONE H. D., BRIDGES R. G. THE PHOSPHOLIPIDS OF THE HOUSEFLY, MUSCA DOMESTICA. Biochem J. 1963 Oct;89:11–21. doi: 10.1042/bj0890011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAWSON R. M. A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem J. 1960 Apr;75:45–53. doi: 10.1042/bj0750045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAWSON R. M., HEMINGTON N., DAVENPORT J. B. Improvements in the method of determining individual phospholipids in a complex mixture by successive chemical hydrolyses. Biochem J. 1962 Sep;84:497–501. doi: 10.1042/bj0840497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DITTMER J. C., DAWSON R. M. The isolation of a new lipid, triphosphoinositide, and monophosphoinositide from ox brain. Biochem J. 1961 Dec;81:535–540. doi: 10.1042/bj0810535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DITTMER J. C., LESTER R. L. A SIMPLE, SPECIFIC SPRAY FOR THE DETECTION OF PHOSPHOLIPIDS ON THIN-LAYER CHROMATOGRAMS. J Lipid Res. 1964 Jan;5:126–127. [PubMed] [Google Scholar]
  10. De Koning A. J., McMullan K. B. Hydrolysis of phospholipids with hydrochloric acid. Biochim Biophys Acta. 1965 Dec 2;106(3):519–526. doi: 10.1016/0005-2760(65)90068-8. [DOI] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. HANAHAN D. J., DITTMER J. C., WARASHINA E. A column chromatographic separation of classes of phospholipides. J Biol Chem. 1957 Oct;228(2):685–700. [PubMed] [Google Scholar]
  13. HORIGUCHI M., KANDATSU M. Isolation of 2-aminoethane phosphonic acid from rumen protozoa. Nature. 1959 Sep 19;184(Suppl 12):901–902. doi: 10.1038/184901b0. [DOI] [PubMed] [Google Scholar]
  14. Hori T., Itasaka O., Inoue H. Biochemistry of shellfish lipid. 3. Purification and elemental analysis of ceramide aminoethylphosphonate from Corbicula complex lipid mixtures. J Biochem. 1966 Jun;59(6):570–573. doi: 10.1093/oxfordjournals.jbchem.a128345. [DOI] [PubMed] [Google Scholar]
  15. KITTREDGE J. S., ROBERTS E., SIMONSEN D. G. The occurrence of free 2-aminoethylphosphonic acid in the sea anemone, Anthopleura elegantissima. Biochemistry. 1962 Jul;1:624–628. doi: 10.1021/bi00910a013. [DOI] [PubMed] [Google Scholar]
  16. Kittredge J. S., Isbell A. F., Hughes R. R. Isolation and characterization of the N-methyl derivatives of 2-aminoethylphosphonic acid from the sea anemone, Anthopleura xanthogrammica. Biochemistry. 1967 Jan;6(1):289–295. doi: 10.1021/bi00853a045. [DOI] [PubMed] [Google Scholar]
  17. Liang C. R., Rosenberg H. The biosynthesis of the phosphonic analogue of cephalin in tetrahymena. Biochim Biophys Acta. 1966 Dec 7;125(3):548–562. doi: 10.1016/0005-2760(66)90043-9. [DOI] [PubMed] [Google Scholar]
  18. Nakamura M. Inability of decenylsuccinic acid to protect Escherichia coli against damage by freezing. Nature. 1966 Apr 2;210(5031):113–114. doi: 10.1038/210113b0. [DOI] [PubMed] [Google Scholar]
  19. ROSENBERG H. DISTRIBUTION AND FATE OF 2-AMINOETHYLPHOSPHONIC ACID IN TETRAHYMENA. Nature. 1964 Jul 18;203:299–300. doi: 10.1038/203299b0. [DOI] [PubMed] [Google Scholar]
  20. SCHMIDT G., BESSMAN M. J., THANNHAUSER S. J. The hydrolysis of L- alpha-glycerylphosphorylethanolamine. J Biol Chem. 1953 Aug;203(2):849–853. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES