Abstract
1. Free and total activities of β-glucosidase, β-galactosidase, N-acetyl-β-glucosaminidase and β-glucuronidase have been determined fluorimetrically in five subcellular fractions of rat kidney. 2. The β-glucosidase activity appeared in the soluble fraction, β-glucuronidase had the distribution pattern of a lysosomal enzyme, and both β-galactosidase and N-acetyl-β-glucosaminidase had bimodal distributions. 3. Two types of β-galactosidase activity were found: a sedimentable type, having optimum pH3·7, mol.wt. about 80000 and slow electrophoretic mobility at pH7·0 in starch gel; and a soluble type of much faster mobility, having optimum pH5·5–6·5 and mol.wt. about 40000. 4. Evidence is presented that the β-glucosidase and the soluble type of β-galactosidase are the same enzyme. 5. Most of the N-acetyl-β-glucosaminidase activity was in the lysosome-rich fractions, but a significant proportion occurred in the microsomal fraction in a non-latent form. 6. The use of β-galactosidase and N-acetyl-β-glucosaminidase as lysosomal marker enzymes is complicated by the possible presence of multiple forms, but this limitation does not apply to β-glucuronidase in the rat kidney.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONCHIE J., HAY A. J. Mammalian glycosidases. 4. The intracellular localization of beta-galactosidase, alpha-mannosidase, beta-N-acetylglucosaminidase and alpha-L-fucosidase in mammalian tissues. Biochem J. 1963 May;87:354–361. doi: 10.1042/bj0870354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chytil F. Mammalian beta-galactosidases. Biochem Biophys Res Commun. 1965 May 18;19(5):630–636. doi: 10.1016/0006-291x(65)90386-4. [DOI] [PubMed] [Google Scholar]
- Fishman W. H., Goldman S. S., DeLellis R. Dual localization of beta-glucuronidase in endoplasmic reticulum and in lysosomes. Nature. 1967 Feb 4;213(5075):457–460. doi: 10.1038/213457a0. [DOI] [PubMed] [Google Scholar]
- Furth A. J., Robinson D. Specificity and multiple forms of beta-galactosidase in the rat. Biochem J. 1965 Oct;97(1):59–66. doi: 10.1042/bj0970059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEVVY G. A., McALLAN A., HAY A. J. Inhibition of glycosidases by aldonolactones of corresponding configuration. 3. Inhibitors of beta-D-galactosidase. Biochem J. 1962 Feb;82:225–232. doi: 10.1042/bj0820225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUTENBURG A. M., RUTENBURG S. H., MONIS B., TEAGUE R., SELIGMAN A. M. Histochemical demonstration of beta-D-galactosidase in the rat. J Histochem Cytochem. 1958 Mar;6(2):122–129. doi: 10.1177/6.2.122. [DOI] [PubMed] [Google Scholar]
- Robinson D., Abrahams H. E. Beta-D-xylosidase in pig kidney. Biochim Biophys Acta. 1967 Jan 11;132(1):212–214. doi: 10.1016/0005-2744(67)90215-x. [DOI] [PubMed] [Google Scholar]
- Robinson D., Price R. G., Dance N. Separation and properties of beta-galactosidase, beta-glucosidase, beta-glucuronidase and N-acetyl-beta-glucosaminidase from rat kidney. Biochem J. 1967 Feb;102(2):525–532. doi: 10.1042/bj1020525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SELLINGER O. Z., BEAUFAY H., JACQUES P., DOYEN A., DE DUVE C. Tissue fractionation studies. 15. Intracellular distribution and properties of beta-N-acetylglucosaminidase and beta-galactosidase in rat liver. Biochem J. 1960 Mar;74:450–456. doi: 10.1042/bj0740450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHIBKO S., TAPPEL A. L. RAT-KIDNEY LYSOSOMES: ISOLATION AND PROPERTIES. Biochem J. 1965 Jun;95:731–741. doi: 10.1042/bj0950731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SLATER T. F., PLANTEROSE D. N. Studies on the particulate components of rat mammary gland. 5. Comparison of large particles from liver and mammary gland. Biochem J. 1960 Mar;74:584–591. doi: 10.1042/bj0740584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STELLWAGEN E., SCHACHMAN H. K. The dissociation and reconstitution of aldolase. Biochemistry. 1962 Nov;1:1056–1069. doi: 10.1021/bi00912a016. [DOI] [PubMed] [Google Scholar]
- STRAUS W. Concentration of acid phosphatase, ribonuclease, desoxyribonuclease, beta-glucuronidase, and cathepsin in droplets isolated from the kidney cells of normal rats. J Biophys Biochem Cytol. 1956 Sep 25;2(5):513–521. doi: 10.1083/jcb.2.5.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VANLANCKER J. L. LYSOSOMES. CONCLUDING REMARKS. Fed Proc. 1964 Sep-Oct;23:1050–1052. [PubMed] [Google Scholar]
- Wattiaux-De Coninck S., Rutgeerts M. J., Wattiaux R. Lysosomes in rat-kidney tissue. Biochim Biophys Acta. 1965 Sep 20;105(3):446–459. doi: 10.1016/s0926-6593(65)80230-2. [DOI] [PubMed] [Google Scholar]