Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1967 Dec;105(3):947–952. doi: 10.1042/bj1050947

The morphological site of synthesis of cytochrome c in mammalian cells (Krebs cells)

K B Freeman 1,*, D Haldar 1,*, T S Work 1
PMCID: PMC1198412  PMID: 16742570

Abstract

In Krebs ascites-tumour cells, cytochrome c is segregated in the mitochondria and the level in microsomes could not be measured. At 22° in glucose–buffer Krebs cells synthesized a spectrum of proteins including cytochrome c. Mild osmotic shock in the presence of ribonuclease had little effect on incorporation of [14C]-leucine or [14C]valine into mixed mitochondrial protein but strongly inhibited synthesis of non-mitochondrial cytoplasmic proteins. Under these conditions, labelling of cytochrome c was also strongly inhibited. After pulse labelling of Krebs cells at 22° for 10min. the cytcchrome radioactivity found in mitochondria was higher than in microsomes. After addition of unlabelled amino acid as `chase' there was 137% increase in radioactivity of cytochrome c but only a 3% increase in radioactivity of whole-cell protein. It is concluded that the peptide chain of cytochome c is synthesized on cytoplasmic ribosomes. Mitochondria therefore do not have the character of self-replicating entities, but are formed by the cooperative function of messenger RNA of cytoplasmic ribosomes and, possibly, of intramitochondrial messenger derived from the mitochondrial DNA.

Full text

PDF
952

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANCE B., HESS B. Metabolic control mechanisms. I. Electron transfer in the mammalian cell. J Biol Chem. 1959 Sep;234:2404–2412. [PubMed] [Google Scholar]
  2. FREEMAN K. B. PROTEIN SYNTHESIS IN MITOCHONDRIA. 4. PREPARATION AND PROPERTIES OF MITOCHONDRIA FROM KREBS II MOUSE ASCITES-TUMOUR CELLS. Biochem J. 1965 Feb;94:494–501. doi: 10.1042/bj0940494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Haldar D., Freeman K. B., Work T. S. The site of synthesis of mitochondrial proteins in Krebs II ascites-tumour cells. Biochem J. 1967 Mar;102(3):684–690. doi: 10.1042/bj1020684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haldar D., Freeman K., Work T. S. Biogenesis ommitochondria. Nature. 1966 Jul 2;211(5044):9–12. doi: 10.1038/211009a0. [DOI] [PubMed] [Google Scholar]
  5. MARGOLIASH E., FROHWIRT N., WIENER E. A study of the cytochrome c haemochromogen. Biochem J. 1959 Mar;71(3):559–570. doi: 10.1042/bj0710559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MARGOLIASH E., LUSTGARTEN J. Interconversion of horse heart cytochrome C monomer and polymers. J Biol Chem. 1962 Nov;237:3397–3405. [PubMed] [Google Scholar]
  7. MARGOLIASH E., SMITH E. L., KREIL G., TUPPY H. Amino-acid sequence of horse heart cytochrome c. Nature. 1961 Dec 23;192:1125–1127. doi: 10.1038/1921125a0. [DOI] [PubMed] [Google Scholar]
  8. MARTIN E. M., MALEC J., SVED S., WORK T. S. Studies on protein and nucleic acid metabolism in virus-infected mammalian cells. 1. Encephalomyocarditis virus in Krebs II mouse-ascites-tumour cells. Biochem J. 1961 Sep;80:585–597. doi: 10.1042/bj0800585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PETERS T., Jr The biosynthesis of rat serum albumin. I. Properties of rat albumin and its occurrence in liver cell fractions. J Biol Chem. 1962 Apr;237:1181–1185. [PubMed] [Google Scholar]
  10. RIETHMUELLER G., TUPPY H. HAEMSYNTHETASE (FERROCHELATASE) IN SACCHAROMYCES CEREVISIAE NACH AEROBEM UND ANAEROBEM WACHSTUM. Biochem Z. 1964 Sep 28;340:413–420. [PubMed] [Google Scholar]
  11. ROODYN D. B., SUTTIE J. W., WORK T. S. Protein synthesis in mitochondria. 2. Rate of incorporation in vitro of radioactive amino acids into soluble proteins in the mitochondrial fraction, including catalase, malic dehydrogenase and cytochrome c. Biochem J. 1962 Apr;83:29–40. doi: 10.1042/bj0830029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Redman C. M., Sabatini D. D. Vectorial discharge of peptides released by puromycin from attached ribosomes. Proc Natl Acad Sci U S A. 1966 Aug;56(2):608–615. doi: 10.1073/pnas.56.2.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roodyn D. B. Further study of factors affecting amino acid incorporation into protein by isolated mitochondria. Biochem J. 1965 Dec;97(3):782–793. doi: 10.1042/bj0970782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. STEINBERG D. A new approach to radioassay of aqueous solutions in the liquid scintillation spectrometer. Anal Biochem. 1960 Jun;1:23–39. doi: 10.1016/0003-2697(60)90016-6. [DOI] [PubMed] [Google Scholar]
  15. SUTTIE J. W. The existence of two routes for incorporation of amino acids into protein of isolated rat-liver mitochondria. Biochem J. 1962 Aug;84:382–386. doi: 10.1042/bj0840382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sherman F., Stewart J. W., Margoliash E., Parker J., Campbell W. The structural gene for yeast cytochrome C. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1498–1504. doi: 10.1073/pnas.55.6.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sugimura T., Okabe K., Nagao M., Gunge N. A respiration-deficient mutant of Saccharomyces cerevisiae which accumulates porphyrins and lacks cytochromes. Biochim Biophys Acta. 1966 Feb 28;115(2):267–275. doi: 10.1016/0304-4165(66)90425-9. [DOI] [PubMed] [Google Scholar]
  18. van GELDER B., SLATER E. C. The extinction coefficient of cytochrome c. Biochim Biophys Acta. 1962 Apr 23;58:593–595. doi: 10.1016/0006-3002(62)90073-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES