Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Jan;106(1):271–277. doi: 10.1042/bj1060271

Precursors of the pyrimidine moiety of thiamine

P C Newell 1,*, R G Tucker 1
PMCID: PMC1198495  PMID: 4889363

Abstract

1. A method was devised for obtaining the pyrimidine moiety of thiamine in a pure form after its excretion into the medium by de-repressed washed-cell suspensions of mutants of Salmonella typhimurium LT2. 2. By using amino acid-requiring mutants, this excretion of pyrimidine moiety was shown to be dependent on the presence of both methionine and glycine. 3. In the presence of either [Me-14C]methionine or [G-14C]methionine, methionine-requiring mutants did not incorporate radioactivity into the pyrimidine moiety. 4. In contrast, both [1-14C]glycine and [2-14C]glycine were incorporated into the pyrimidine moiety excreted by glycine-requiring mutants, and this occurred with little or no dilution of specific radioactivity. 5. The possible requirement for methionine as a cofactor and the significance of the incorporation of both carbon atoms of glycine are discussed.

Full text

PDF
277

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAVID S., ESTRAMAREIX B. [Incorporation of [C-14]-formate into the pyrimidine of thiamine by Saccharomyces cerevisiae]. Biochim Biophys Acta. 1960 Aug 26;42:562–563. doi: 10.1016/0006-3002(60)90849-0. [DOI] [PubMed] [Google Scholar]
  2. DAVID S., ESTRAMAREIX B. [On the biogenesis of the pyrimidine of thiamine]. Biochim Biophys Acta. 1961 May 13;49:411–411. doi: 10.1016/0006-3002(61)90149-4. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. David S., Estramareix B., Hirshfeld H. Le formiate, précurseur du carbone 4 de la pyrimidine de la thiamine. Biochim Biophys Acta. 1966 Sep 26;127(1):264–265. [PubMed] [Google Scholar]
  5. GOLDSTEIN G. A., BROWN G. M. THE BIOSYNTHESIS OF THIAMINE. V. STUDIES CONCERNING PRECURSORS OF THE PYRIMIDINE MOIETY. Arch Biochem Biophys. 1963 Dec;103:449–452. doi: 10.1016/0003-9861(63)90436-3. [DOI] [PubMed] [Google Scholar]
  6. Gold M., Hurwitz J., Anders M. THE ENZYMATIC METHYLATION OF RNA AND DNA, II. ON THE SPECIES SPECIFICITY OF THE METHYLATION ENZYMES. Proc Natl Acad Sci U S A. 1963 Jul;50(1):164–169. doi: 10.1073/pnas.50.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson D. B., Howells D. J., Goodwin T. W. Observations on the biosynthesis of thiamine in yeast. Biochem J. 1966 Jan;98(1):30–37. doi: 10.1042/bj0980030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knappe J., Bohnert E., Brummer W. S-adenosyl-L-methionine, a component of the clastic dissimilation of pyruvate in Escherichia coli. Biochim Biophys Acta. 1965 Oct 18;107(3):603–605. doi: 10.1016/0304-4165(65)90205-9. [DOI] [PubMed] [Google Scholar]
  9. MANDELSTAM J. The free amino acids in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):103–110. doi: 10.1042/bj0690103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NAKADA H. I., FRIEDMANN B., WEINHOUSE S. Pathways of glycine catabolism in rat liver. J Biol Chem. 1955 Oct;216(2):583–592. [PubMed] [Google Scholar]
  11. Newell P. C., Tucker R. G. Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem J. 1968 Jan;106(1):279–287. doi: 10.1042/bj1060279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Newell P. C., Tucker R. G. The control mechanism of thiamine biosynthesis a model for the study of control of converging pathways. Biochem J. 1966 Aug;100(2):517–524. doi: 10.1042/bj1000517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Newell P. C., Tucker R. G. The de-repression of thiamine biosynthesis by adenosine a tool for investigating this biosynthetic pathway. Biochem J. 1966 Aug;100(2):512–516. doi: 10.1042/bj1000512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PINE M. J., GUTHRIE R. Incorporation of formate-C 14 into the pyrimidine moiety of thiamine. J Bacteriol. 1959 Oct;78:545–549. doi: 10.1128/jb.78.4.545-549.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RADIN N. S., RITTENBERG D., SHEMIN D. The rôle of glycine in the biosynthesis of heme. J Biol Chem. 1950 Jun;184(2):745–753. [PubMed] [Google Scholar]
  16. SIMMONDS S., MILLER D. A. Metabolism of glycine and serine in Escherichia coli. J Bacteriol. 1957 Dec;74(6):775–783. doi: 10.1128/jb.74.6.775-783.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tomlinson R. V. Acetate as methyl group precursor in the pyrimidine moiety of thiamine. Biochim Biophys Acta. 1966 Feb 28;115(2):526–529. doi: 10.1016/0304-4165(66)90462-4. [DOI] [PubMed] [Google Scholar]
  18. WILSON A. C., PARDEE A. B. Regulation of flavin synthesis by Escherichia coli. J Gen Microbiol. 1962 Jun;28:283–303. doi: 10.1099/00221287-28-2-283. [DOI] [PubMed] [Google Scholar]
  19. Williams R. R., Waterman R. E., Keresztesy J. C. STUDIES OF CRYSTALLINE VITAMIN B1 VII. ITS RELATION TO PATHOLOGICAL STATES. Science. 1935 May 31;81(2109):535–536. doi: 10.1126/science.81.2109.535-a. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES