Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Jan;106(1):279–287. doi: 10.1042/bj1060279

Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates

P C Newell 1,*, R G Tucker 1
PMCID: PMC1198496  PMID: 4889364

Abstract

1. The pattern of distribution on the purine pathway of mutants of Salmonella typhimurium LT2 that had the double growth requirement for a purine plus the pyrimidine moiety of thiamine (ath mutants) indicated that purines and the pyrimidine moiety of thiamine share the early part of their biosynthetic pathways, and that 4-aminoimidazole ribonucleotide (AIR) is the last common intermediate. Two mutants that at first appeared anomalous were further investigated and found not to affect this deduction. 2. The ribonucleoside form of AIR (AIRs) satisfied the requirements both for a purine and for the pyrimidine moiety of thiamine of an ath mutant. 3. Methionine was required for the conversion of AIR into the pyrimidine moiety. 4. Radioactive AIRs was converted into radioactive pyrimidine moiety by an ath mutant without significant dilution of specific radioactivity. 5. Possible mechanisms for pyrimidine-moiety biosynthesis from AIR are discussed.

Full text

PDF
281

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROOKE M. S., MAGASANIK B. The metabolism of purines in Aerobacter aerogenes: a study of purineless mutants. J Bacteriol. 1954 Dec;68(6):727–733. doi: 10.1128/jb.68.6.727-733.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. David S., Estramareix B., Hirshfeld H. Le formiate, précurseur du carbone 4 de la pyrimidine de la thiamine. Biochim Biophys Acta. 1966 Sep 26;127(1):264–265. [PubMed] [Google Scholar]
  4. GOLDTHWAIT D. A., GREENBERG G. R., PEABODY R. A. The involvement of 5-phosphoribosylamine in the biosynthesis of glycinamide ribotide. Biochim Biophys Acta. 1955 Sep;18(1):148–149. doi: 10.1016/0006-3002(55)90026-3. [DOI] [PubMed] [Google Scholar]
  5. GOTS J. S. Purine metabolism in bacteria. V. Feed-back inhibition. J Biol Chem. 1957 Sep;228(1):57–66. [PubMed] [Google Scholar]
  6. Gots J. S., Gollub E. G. SEQUENTIAL BLOCKADE IN ADENINE BIOSYNTHESIS BY GENETIC LOSS OF AN APPARENT BIFUNCTIONAL DEACYLASE. Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):826–834. doi: 10.1073/pnas.43.9.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOVE S. H., GOTS J. S. Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of Escherichia coli. J Biol Chem. 1955 Feb;212(2):647–654. [PubMed] [Google Scholar]
  8. MAGASANIK B., KARIBIAN D. Purine nucleotide cycles and their metabolic role. J Biol Chem. 1960 Sep;235:2672–2681. [PubMed] [Google Scholar]
  9. MANDELSTAM J. The free amino acids in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):103–110. doi: 10.1042/bj0690103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MOYED H. S. INHIBITION OF THE BIOSYNTHESIS OF THE PYRIMIDINE PORTION OF THIAMINE BY ADENOSINE. J Bacteriol. 1964 Oct;88:1024–1029. doi: 10.1128/jb.88.4.1024-1029.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mazlen A. S., Eaton N. R. Biochemical basis for the adenine requirement of ad3 mutants of Saccharomyces. Biochem Biophys Res Commun. 1967 Mar 9;26(5):590–595. doi: 10.1016/0006-291x(67)90106-4. [DOI] [PubMed] [Google Scholar]
  12. NIERLICH D. P., MAGASANIK B. REGULATION OF PURINE RIBONUCLEOTIDE SYNTHESIS BY END PRODUCT INHIBITION. THE EFFECT OF ADENINE AND GUANINE RIBONUCLEOTIDES ON THE 5'-PHOSPHORIBOSYL-PYROPHOSPHATE AMIDOTRANSFERASE OF AEROBACTER AEROGENES. J Biol Chem. 1965 Jan;240:358–365. [PubMed] [Google Scholar]
  13. Newell P. C., Tucker R. G. Precursors of the pyrimidine moiety of thiamine. Biochem J. 1968 Jan;106(1):271–277. doi: 10.1042/bj1060271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Newell P. C., Tucker R. G. The control mechanism of thiamine biosynthesis a model for the study of control of converging pathways. Biochem J. 1966 Aug;100(2):517–524. doi: 10.1042/bj1000517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Newell P. C., Tucker R. G. The de-repression of thiamine biosynthesis by adenosine a tool for investigating this biosynthetic pathway. Biochem J. 1966 Aug;100(2):512–516. doi: 10.1042/bj1000512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RABINOWITZ J. C. Purine fermentation by Clostridium cylindrosporum. III. 4-Amino-5-imidazolecarboxylic acid and 4-aminoimidazole. J Biol Chem. 1956 Jan;218(1):175–187. [PubMed] [Google Scholar]
  17. Stouthamer A. H., de Haan P. G., Nijkamp H. J. Mapping of purine markers in Escherichia coli K 12. Genet Res. 1965 Nov;6(3):442–453. doi: 10.1017/s0016672300004328. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES