Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Mar;107(1):55–62. doi: 10.1042/bj1070055

The pathway of biosynthesis of nicotinamide–adenine dinucleotide in rat mammary gland

A L Greenbaum 1, S Pinder 1,*
PMCID: PMC1198610  PMID: 4296054

Abstract

1. The pathway of NAD synthesis in mammary gland was examined by measuring the activities of some of the key enzymes in each of the tryptophan, nicotinic acid and nicotinamide pathways. 2. In the tryptophan pathway, 3-hydroxyanthranilate oxidase and quinolinate transphosphoribosylase activities were investigated. Neither of these enzymes was found in mammary gland. 3. In the nicotinic acid pathway, nicotinate mononucleotide pyrophosphorylase, NAD synthetase, nicotinamide deamidase and NMN deamidase were investigated. Both NAD synthetase and nicotinate mononucleotide pyrophosphorylase were present but were very inactive. Nicotinamide deamidase, if present, had a very low activity and NMN deamidase was absent. 4. In the nicotinamide pathway both enzymes, NMN pyrophosphorylase and NMN adenylyltransferase, were present and showed very high activity. The activity of the pyrophosphorylase in mammary gland is by far the highest yet found in any tissue. 5. The apparent Km values for the substrates of these enzymes in mammary gland were determined. 6. On the basis of these investigations it is proposed that the main, and probably only, pathway of synthesis of NAD in mammary tissue is from nicotinamide via NMN.

Full text

PDF
58

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINSON M. R., JACKSON J. F., MORTON R. K. Substrate specificity and inhibition of nicotinamide mononucleotideadenylyl transferase of liver nuclei: possible mechanism of effect of 6-mercaptopurine on tumour growth. Nature. 1961 Dec 9;192:946–948. doi: 10.1038/192946a0. [DOI] [PubMed] [Google Scholar]
  2. BONASERA N., MANGIONE G., BONAVITA V. Diphosphopyridine nucleotide synthesis in brain following injection of various compounds. Biochem Pharmacol. 1963 Jul;12:633–636. doi: 10.1016/0006-2952(63)90038-8. [DOI] [PubMed] [Google Scholar]
  3. BRANSTER M. V., MORTON R. K. Comparative rates of synthesis of diphosphopyridine nucleotide by normal and tumour tissue from mouse mammary gland; studies with isolated nuclei. Biochem J. 1956 Aug;63(4):640–646. doi: 10.1042/bj0630640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CHAYKIN S., DAGANI M., JOHNSON L., SAMLI M., BATTAILE J. THE FATE OF NICOTINAMIDE IN THE MOUSE; TISSUE METABOLITES. Biochim Biophys Acta. 1965 May 4;100:351–365. doi: 10.1016/0304-4165(65)90004-8. [DOI] [PubMed] [Google Scholar]
  5. CHAYKIN S., DAGANI M., JOHNSON L., SAMLI M. THE FATE OF NICOTINAMIDE IN THE MOUSE. URINARY METABOLITES. J Biol Chem. 1965 Feb;240:932–938. [PubMed] [Google Scholar]
  6. DECKER R. H., KANG H. H., LEACH F. R., HENDERSON L. M. Purification and properties of 3-hydroxyanthranilic acid oxidase. J Biol Chem. 1961 Nov;236:3076–3082. [PubMed] [Google Scholar]
  7. DOLD U., MIELSCH M., HOLZER H. DPN-SYNTHESE MIT NICOTINSAEUREAMID IN ZELLFREIEN EXTRAKTEN AUS EHRLICH-ASCITES-TUMORZELLEN. Biochem Z. 1963;338:349–355. [PubMed] [Google Scholar]
  8. Dahmen W., Webb B., Preiss J. The deamido-diphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast. Arch Biochem Biophys. 1967 May;120(2):440–450. doi: 10.1016/0003-9861(67)90262-7. [DOI] [PubMed] [Google Scholar]
  9. Dietrich L. S., Fuller L., Yero I. L., Martinez L. Nicotinamide mononucleotide pyrophosphorylase activity in animal tissues. J Biol Chem. 1966 Jan 10;241(1):188–191. [PubMed] [Google Scholar]
  10. Dietrich L. S., Fuller L., Yero I. L., Martinez L. Nicotinamide mononucleotide pyrophosphorylase activity in ascites cell extracts. Nature. 1965 Oct 23;208(5008):347–348. doi: 10.1038/208347a0. [DOI] [PubMed] [Google Scholar]
  11. GHOLSON R. K., UEDA I., OGASAWARA N., HENDERSON L. M. THE ENZYMATIC CONVERSION OF QUINOLINATE TO NICOTINIC ACID MONONUCLEOTIDE IN MAMMALIAN LIVER. J Biol Chem. 1964 Apr;239:1208–1214. [PubMed] [Google Scholar]
  12. GREENBAUM A. L., CLARK J. B., MCLEAN P. THE ESTIMATION OF THE OXIDIZED AND REDUCED FORMS OF THE NICOTINAMIDE NUCLEOTIDES. Biochem J. 1965 Apr;95:161–166. doi: 10.1042/bj0950161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GREENGARD P., QUINN G. P., REID M. B. PITUITARY INFLUENCE OF PYRIDINE NUCLEOTIDE METABOLISM OF RAT LIVER. J Biol Chem. 1964 Jun;239:1887–1892. [PubMed] [Google Scholar]
  14. Greenbaum A. L., Clark J. B., McLean P. The activities of nicotinamide mononucleotide adenylyltransferase and of nicotinamide-adenine dinucleotide kinase in the livers of rats subjected to different hormonal treatments. Biochem J. 1965 Aug;96(2):507–516. doi: 10.1042/bj0960507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grunicke H., Liersch M., Hinz M., Puschendorf B., Richter E., Holzer H. Die Bedeutung des Nikotinsäureamids für die Synthese des NAD in Ehrlich-Ascites-Tumorzellen. Biochim Biophys Acta. 1966 Jun 29;121(2):228–240. [PubMed] [Google Scholar]
  16. HOGEBOOM G. H., SCHNEIDER W. C. Cytochemical studies. VI. The synthesis of diphosphopyridine nucleotide by liver cell nuclei. J Biol Chem. 1952 May;197(2):611–620. [PubMed] [Google Scholar]
  17. HONJO T., IKEDA M., ANDREOLI A. J., NISHIZUKA Y., HAYAISHI O. ENZYMIC PREPARATION OF NICOTINATE ADENINE DINUCLEOTIDE (DEAMIDO-NAD). Biochim Biophys Acta. 1964 Sep 18;89:549–552. doi: 10.1016/0926-6569(64)90084-7. [DOI] [PubMed] [Google Scholar]
  18. Honjo T., Nakamura S., Nishizuka Y., Hayaishi O. Stoichiometric utilization of adenosine 5'-triphosphate in nicotinate ribonucleotide synthesis from nicotinate and 5-phosphoribosyl-1-pyrophosphate. Biochem Biophys Res Commun. 1966 Oct 20;25(2):199–204. doi: 10.1016/0006-291x(66)90580-8. [DOI] [PubMed] [Google Scholar]
  19. IKEDA M., TSUJI H., NAKAMURA S., ICHIYAMA A., NISHIZUKA Y., HAYAISHI O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. II. A ROLE OF PICOLINIC CARBOXYLASE IN THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE FROM TRYPTOPHAN IN MAMMALS. J Biol Chem. 1965 Mar;240:1395–1401. [PubMed] [Google Scholar]
  20. IMSANDE J. Pathway of diphosphopyridine nucleotide biosynthesis in Escherichia coli. J Biol Chem. 1961 May;236:1494–1497. [PubMed] [Google Scholar]
  21. Ijichi H., Ichiyama A., Hayaishi O. Studies on the biosynthesis of nicotinamide adenine dinucleotide. 3. Comparative in vivo studies on nicotinic acid, nicotinamide, and quinolinic acid as precursors of nicotinamide adenine dinucleotide. J Biol Chem. 1966 Aug 25;241(16):3701–3707. [PubMed] [Google Scholar]
  22. JACOBSON K. B., KAPLAN N. O. Distribution of enzymes cleaving pyridine nucleotides in animal tissues. J Biophys Biochem Cytol. 1957 Jan 25;3(1):31–43. doi: 10.1083/jcb.3.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. KAPLAN N. O., GOLDIN A., HUMPHREYS S. R., STOLZENBACH F. E. Pyridine precursors of mouse liver diphosphopyridine nucleotide. J Biol Chem. 1957 May;226(1):365–371. [PubMed] [Google Scholar]
  24. KODKICEK E., REDDI K. K. Paper chromatography of nicotinic acid derivatives. Nature. 1951 Sep 15;168(4272):475–477. doi: 10.1038/168475b0. [DOI] [PubMed] [Google Scholar]
  25. Kirchner J., Watson J. G., Chaykin S. Nicotinamide deamidase from rabbit liver. J Biol Chem. 1966 Feb 25;241(4):953–960. [PubMed] [Google Scholar]
  26. NISHIZUKA Y., HAYAISHI O. STUDIES ON THE BIOSYNTHESIS OF NICOTINAMIDE ADENINE DINUCLEOTIDE. I. ENZYMIC SYNTHESIS OF NIACIN RIBONUCLEOTIDES FROM 3-HYDROXYANTHRANILIC ACID IN MAMMALIAN TISSUES. J Biol Chem. 1963 Oct;238:3369–3377. [PubMed] [Google Scholar]
  27. PETRACK B., GREENGARD P., CRASTON A., SHEPPY F. NICOTINAMIDE DEAMIDASE FROM MAMMALIAN LIVER. J Biol Chem. 1965 Apr;240:1725–1730. [PubMed] [Google Scholar]
  28. PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem. 1958 Aug;233(2):488–492. [PubMed] [Google Scholar]
  29. PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem. 1958 Aug;233(2):493–500. [PubMed] [Google Scholar]
  30. PREISS J., HANDLER P. Enzymatic synthesis of nicotinamide mononucleotide. J Biol Chem. 1957 Apr;225(2):759–770. [PubMed] [Google Scholar]
  31. SARMA D. S., RAJALAKSHMI S., SARMA P. S. Deamidation of nicotinamide and NMN. Biochem Biophys Res Commun. 1961 Dec 20;6:389–393. doi: 10.1016/0006-291x(61)90151-6. [DOI] [PubMed] [Google Scholar]
  32. SCHNEIDER W. C., HOGEBOOM G. H. Intracellular distribution of succinoxidase and cytochrome oxidase activities in normal mouse liver and in mouse hepatoma. J Natl Cancer Inst. 1950 Feb;10(4):969–975. [PubMed] [Google Scholar]
  33. SHIMOYAMA M., KORI J., USUKI K., LAN S. J., GHOLSON R. K. ENZYMIC LESIONS OF NICOTINAMIDE-ADENINE DINUCLEOTIDE BIOSYNTHESIS IN HEPATOMAS. Biochim Biophys Acta. 1965 Feb 15;97:402–404. doi: 10.1016/0304-4165(65)90124-8. [DOI] [PubMed] [Google Scholar]
  34. SLATER T. F., PLANTEROSE D. N. Studies on the particulate components of rat mammary gland. 5. Comparison of large particles from liver and mammary gland. Biochem J. 1960 Mar;74:584–591. doi: 10.1042/bj0740584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ZATMAN L. J., KAPLAN N. O., COLOWICK S. P. Inhibition of spleen diphosphopyridine nucleotidase by nicotinamide, an exchange reaction. J Biol Chem. 1953 Jan;200(1):197–212. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES