Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Jun;108(2):169–175. doi: 10.1042/bj1080169

Some properties of galactokinase in developing rat liver

D G Walker 1, H H Khan 1,*
PMCID: PMC1198790  PMID: 5665881

Abstract

1. The nature of the galactokinase present in the livers of foetal, newborn and adult rats was examined by the application of several separation procedures and by measurement of a range of kinetic parameters. 2. No evidence of enzyme heterogeneity at any stage of development was found during gel filtration on Sephadex G-100, column chromatography on DEAE-cellulose or a variety of electrophoretic procedures. 3. The Km values, inhibition characteristics and other kinetic parameters appear to remain constant during development. 4. Rat liver galactokinase activity does not adapt to dietary changes in either the adult or the newborn rat; hence it is unlikely that the presence of galactose in milk controls the enzymic activity profile during development. 5. On the present evidence it is concluded that only one form of galactokinase is present in rat liver and that the enzymic activity is controlled by non-dietary factors.

Full text

PDF
174

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard F. J. Kinetic studies with liver galactokinase. Biochem J. 1966 Oct;101(1):70–75. doi: 10.1042/bj1010070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballard F. J. Purification and properties of galactokinase from pig liver. Biochem J. 1966 Jan;98(1):347–352. doi: 10.1042/bj0980347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bertoli D., Segal S. Developmental aspects and some characteristics of mammalian galactose 1-phosphate uridyltransferase. J Biol Chem. 1966 Sep 10;241(17):4023–4029. [PubMed] [Google Scholar]
  4. CUATRECASAS P., SEGAL S. MAMMALIAN GALACTOKINASE. DEVELOPMENTAL AND ADAPTIVE CHARACTERISTICS IN THE RAT LIVER. J Biol Chem. 1965 Jun;240:2382–2388. [PubMed] [Google Scholar]
  5. Cuatrecasas P., Segal S. Mammalian galactose dehydrogenase. II. Properties, substrate specificity, and developmental changes. J Biol Chem. 1966 Dec 25;241(24):5910–5918. [PubMed] [Google Scholar]
  6. DOELL R. G., KRETCHMER N. Studies of small intestine during development. I. Distribution and activity of beta-galactosidase. Biochim Biophys Acta. 1962 Aug 13;62:353–362. doi: 10.1016/0006-3002(62)90097-5. [DOI] [PubMed] [Google Scholar]
  7. González C., Ureta T., Sánchez R., Niemeyer H. Multiple molecular forms of ATP:hexose 6-phosphotransferase from rat liver. Biochem Biophys Res Commun. 1964 Jul 1;16(4):347–352. doi: 10.1016/0006-291x(64)90038-5. [DOI] [PubMed] [Google Scholar]
  8. Grossbard L., Schimke R. T. Multiple hexokinases of rat tissues. Purification and comparison of soluble forms. J Biol Chem. 1966 Aug 10;241(15):3546–3560. [PubMed] [Google Scholar]
  9. KOLDOVSKY O., CHYTIL F. POSTNATAL DEVELOPMENT OF BETA-GALACTOSIDASE ACTIVITY IN THE SMALL INTESTINE OF THE RAT. EFFECT OF ADRENALECTOMY AND DIET. Biochem J. 1965 Jan;94:266–270. doi: 10.1042/bj0940266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SHERMAN J. R., ADLER J. Galactokinse from Escherichia coli. J Biol Chem. 1963 Mar;238:873–878. [PubMed] [Google Scholar]
  11. SHERMAN J. R. Rapid enzyme assay technique utilizing radioactive substrate, ion-exchange paper, and liquid scintillation counting. Anal Biochem. 1963 Jun;5:548–554. doi: 10.1016/0003-2697(63)90075-7. [DOI] [PubMed] [Google Scholar]
  12. SOLS A., CRANE R. K. Substrate specificity of brain hexokinase. J Biol Chem. 1954 Oct;210(2):581–595. [PubMed] [Google Scholar]
  13. Vernon R. G., Walker D. G. Adaptive behaviour of some enzymes involved in glucose utilization and formation in rat liver during the weaning period. Biochem J. 1968 Jan;106(2):331–338. doi: 10.1042/bj1060331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Vernon R. G., Walker D. G. Changes in activity of some enzymes involved in glucose utilization and formation in developing rat liver. Biochem J. 1968 Jan;106(2):321–329. doi: 10.1042/bj1060321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WALKER D. G. The post-natal development of hepatic fructokinase. Biochem J. 1963 Jun;87:576–581. doi: 10.1042/bj0870576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Walker D. G., Eaton S. W. Regulation of development of hepatic glucokinase in the neonatal rat by the diet. Biochem J. 1967 Nov;105(2):771–777. doi: 10.1042/bj1050771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Walker D. G., Khan H. H., Eaton S. W. Enzymes catalysing the phosphorylation of hexoses in neonatal animals. Biol Neonat. 1965;9(1):224–239. [PubMed] [Google Scholar]
  18. Walker D. G., Rao S. The role of glucokinase in the phosphorylation of glucose by rat liver. Biochem J. 1964 Feb;90(2):360–368. doi: 10.1042/bj0900360. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES