Abstract
Fourteen isolated ejecting hearts were perfused with a suspension of red cells in Tyrode solution. In five hearts comparison was made between glucose alone as substrate and glucose plus free fatty acid (palmitate). In five hearts the effect of additional lactate was studied. In the remaining hearts no substrate changes were made (controls). There were only transient changes in cardiac output of the hearts (at fixed mean aortic pressure) when the perfusion media were switched from one to another. There were no consistent steady-state changes in myocardial oxygen consumption, mean external power, efficiency, cardiac output or coronary blood flow associated with any of the changes in substrate consumption. Thus we were unable to confirm an increase in oxygen consumption and decrease in efficiency associated with either free fatty acid or lactate as substrates. Isolated rat trabeculae were deprived of exogenous substrate; their mechanical performance remained constant for approximately 10 min. Subsequent deterioration was restored by any of the three exogenous substrates. We conclude that there is no oxygen wasting effect of these substrates as has previously been postulated, nor any deleterious effect of changing exogenous or endogenous carbohydrate or lipid substrate.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Challoner D. R., Steinberg D. Effect of free fatty acid on the oxygen consumption of perfused rat heart. Am J Physiol. 1966 Feb;210(2):280–286. doi: 10.1152/ajplegacy.1966.210.2.280. [DOI] [PubMed] [Google Scholar]
- Drake A. J., Haines J. R., Noble M. I. Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res. 1980 Feb;14(2):65–72. doi: 10.1093/cvr/14.2.65. [DOI] [PubMed] [Google Scholar]
- Elzinga G., Westerhof N. Pump function of the feline left heart: changes with heart rate and its bearing on the energy balance. Cardiovasc Res. 1980 Feb;14(2):81–92. doi: 10.1093/cvr/14.2.81. [DOI] [PubMed] [Google Scholar]
- Gibbs C. L., Papadoyannis D. E., Drake A. J., Noble M. I. Oxygen consumption of the nonworking and potassium chloride-arrested dog heart. Circ Res. 1980 Sep;47(3):408–417. doi: 10.1161/01.res.47.3.408. [DOI] [PubMed] [Google Scholar]
- Henderson A. H., Craig R. J., Gorlin R., Sonnenblick E. H. Free fatty acids and myocardial function in perfused rat hearts. Cardiovasc Res. 1970 Oct;4(4):466–472. doi: 10.1093/cvr/4.4.466. [DOI] [PubMed] [Google Scholar]
- Henderson A. H., Most A. S., Parmley W. W., Gorlin R., Sonnenblick E. H. Depression of myocardial contractility in rats by free fatty acids during hypoxia. Circ Res. 1970 Apr;26(4):439–449. doi: 10.1161/01.res.26.4.439. [DOI] [PubMed] [Google Scholar]
- Henderson A. H., Most A. S., Sonnenblick E. H. Depression of contractility in rat heart muscle by free fatty acids during hypoxia. Lancet. 1969 Oct 18;2(7625):825–826. doi: 10.1016/s0140-6736(69)92277-6. [DOI] [PubMed] [Google Scholar]
- Keul J., Linnet N., Eschenbruch E. The photometric autotitration of free fatty acids. Z Klin Chem Klin Biochem. 1968 Sep;6(5):394–398. doi: 10.1515/cclm.1968.6.5.394. [DOI] [PubMed] [Google Scholar]
- Liedtke A. J., Nellis S., Neely J. R. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res. 1978 Oct;43(4):652–661. doi: 10.1161/01.res.43.4.652. [DOI] [PubMed] [Google Scholar]
- Mjos O. D. Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest. 1971 Jul;50(7):1386–1389. doi: 10.1172/JCI106621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mjös O. D. Free fatty acids and oxygen consumption in dogs. Scand J Clin Lab Invest. 1971 Oct;28(2):121–125. doi: 10.3109/00365517109086892. [DOI] [PubMed] [Google Scholar]
- Most A. S., Lipsky M. H., Szydlik P. A., Bruno C. Failure of free fatty acids to influence myocardial oxygen consumption in the intact, anesthetized dog. Cardiology. 1973;58(4):220–228. doi: 10.1159/000169637. [DOI] [PubMed] [Google Scholar]
- Puls H., Elzinga G. An analogue device for the measurement of cardiovascular variables. Cardiovasc Res. 1978 May;12(5):316–321. doi: 10.1093/cvr/12.5.316. [DOI] [PubMed] [Google Scholar]
- REGAN T. J., BINAK K., GORDON S., DEFAZIO V., HELLEMS H. K. Myocardial blood flow and oxygen consumption during postprandial lipemia and heparin-induced lipolysis. Circulation. 1961 Jan;23:55–63. doi: 10.1161/01.cir.23.1.55. [DOI] [PubMed] [Google Scholar]
- Riemersma R. A., Holland A., Owen P., Lewis B., Opie L. H. The oxidation and subcellular distribution of 14 C-palmitate in experimental acute myocardial infarction. Cardiology. 1971;56(1):364–369. doi: 10.1159/000169386. [DOI] [PubMed] [Google Scholar]
- Rogers W. J., McDaniel H. G., Moraski R. E., Rackley C. E., Russell R. O., Jr Effect of heparin-induced free fatty acid elevation on myocardial oxygen consumption in man. Am J Cardiol. 1977 Sep;40(3):365–372. doi: 10.1016/0002-9149(77)90158-8. [DOI] [PubMed] [Google Scholar]
- Severeid L., Connor W. E., Long J. P. The depressant effect of fatty acids on the isolated rabbit heart. Proc Soc Exp Biol Med. 1969 Sep;131(4):1239–1243. doi: 10.3181/00379727-131-34078. [DOI] [PubMed] [Google Scholar]
- Weber K. T., Janicki J. S. Myocardial oxygen consumption: the role of wall force and shortening. Am J Physiol. 1977 Oct;233(4):H421–H430. doi: 10.1152/ajpheart.1977.233.4.H421. [DOI] [PubMed] [Google Scholar]
- Westerhof N., Elzinga G., Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol. 1971 Nov;31(5):776–781. doi: 10.1152/jappl.1971.31.5.776. [DOI] [PubMed] [Google Scholar]
- Willebrands A. F., van der Veen K. J. Influence of substrate on oxygen consumption of isolated perfused rat heart. Am J Physiol. 1967 Jun;212(6):1529–1535. doi: 10.1152/ajplegacy.1967.212.6.1529. [DOI] [PubMed] [Google Scholar]
- ter Keurs H. E., Rijnsburger W. H., van Heuningen R., Nagelsmit M. J. Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res. 1980 May;46(5):703–714. doi: 10.1161/01.res.46.5.703. [DOI] [PubMed] [Google Scholar]