Skip to main content
Genetics logoLink to Genetics
. 1982 Sep;102(1):109–128. doi: 10.1093/genetics/102.1.109

Comparison of the Restriction Endonuclease Digestion Patterns of Mitochondrial DNA from Normal and Male Sterile Cytoplasms of ZEA MAYS L

Kathleen S Borck 1, Virginia Walbot 1
PMCID: PMC1201918  PMID: 17246091

Abstract

High resolution gel electrophoresis has allowed the assignment of fragment number and molecular weight to EcoRI, SalI and PstI restriction fragments of mitochondrial DNA from B37 normal (N) and B37 T, C and S male sterile cytoplasmic types of maize. A minimum complexity of 450-475 kb has been established. Hybridization of cloned EcoRI fragments to restriction digests of total mitochondrial DNA suggests that at least 80% of the genome is composed of unique sequences. Restriction fragments of identical size in N, T, C and S contain similar sequence information as evidenced by their hybridization behavior.—The total SalI digest and the larger PstI fragments representing 80% of the total complexity were used to calculate the fraction of shared fragments of each pairwise combination of cytoplasmic types. The C type mtDNA is most closely allied with the other mtDNAs and shares 67% of fragments with S, 65% with N, and 60% with T. The S type mtDNA is quite divergent from N (53% shared fragments) and T (56% shared fragments). N and T share 59% of the fragments. These results are discussed in terms of the origin of mtDNA diversity in maize.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avise J. C., Lansman R. A., Shade R. O. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics. 1979 May;92(1):279–295. doi: 10.1093/genetics/92.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bedbrook J. R., Kolodner R., Bogorad L. Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell. 1977 Aug;11(4):739–749. doi: 10.1016/0092-8674(77)90288-4. [DOI] [PubMed] [Google Scholar]
  3. Blattner F. R., Blechl A. E., Denniston-Thompson K., Faber H. E., Richards J. E., Slightom J. L., Tucker P. W., Smithies O. Cloning human fetal gamma globin and mouse alpha-type globin DNA: preparation and screening of shotgun collections. Science. 1978 Dec 22;202(4374):1279–1284. doi: 10.1126/science.725603. [DOI] [PubMed] [Google Scholar]
  4. Bonen L., Huh T. Y., Gray M. W. Can partial methylation explain the complex fragment patterns observed when plant mitochondrial DNA is cleaved with restriction endonucleases? FEBS Lett. 1980 Mar 10;111(2):340–346. doi: 10.1016/0014-5793(80)80823-4. [DOI] [PubMed] [Google Scholar]
  5. Brown W. M. Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3605–3609. doi: 10.1073/pnas.77.6.3605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burke K. A., Brown A. E., Lascelles J. Membrane and cytoplasmic nitrate reductase of Staphylococcus aureus and application of crossed immunoelectrophoresis. J Bacteriol. 1981 Nov;148(2):724–727. doi: 10.1128/jb.148.2.724-727.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  8. Groot G. S., Kroon A. M. Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences. Biochim Biophys Acta. 1979 Sep 27;564(2):355–357. doi: 10.1016/0005-2787(79)90233-8. [DOI] [PubMed] [Google Scholar]
  9. Levings C. S., 3rd, Kim B. D., Pring D. R., Conde M. F., Mans R. J., Laughnan J. R., Gabay-Laughnan S. J. Cytoplasmic Reversion of cms-S in Maize: Association with a Transpositional Event. Science. 1980 Aug 29;209(4460):1021–1023. doi: 10.1126/science.209.4460.1021. [DOI] [PubMed] [Google Scholar]
  10. Levings C. S., 3rd, Pring D. R. Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science. 1976 Jul 9;193(4248):158–160. doi: 10.1126/science.193.4248.158. [DOI] [PubMed] [Google Scholar]
  11. Li W. H. A simulation study on Nei and Li's model for estimating DNA divergence from restriction enzyme maps. J Mol Evol. 1981;17(4):251–255. doi: 10.1007/BF01732763. [DOI] [PubMed] [Google Scholar]
  12. Lonsdale D. M., Thompson R. D., Hodge T. P. The integrated forms of the S1 and S2 DNA elements of maize male sterile mitochondrial DNA are flanked by a large repeated sequence. Nucleic Acids Res. 1981 Aug 11;9(15):3657–3669. doi: 10.1093/nar/9.15.3657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pring D. R., Levings C. S. Heterogeneity of Maize Cytoplasmic Genomes among Male-Sterile Cytoplasms. Genetics. 1978 May;89(1):121–136. doi: 10.1093/genetics/89.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pring D. R., Levings C. S., Hu W. W., Timothy D. H. Unique DNA associated with mitochondria in the "S"-type cytoplasm of male-sterile maize. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2904–2908. doi: 10.1073/pnas.74.7.2904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prunell A., Kopecka H., Strauss F., Bernardi G. The mitochondrial genome of wild-type yeast cells. V. Genome evolution. J Mol Biol. 1977 Feb 15;110(1):17–47. doi: 10.1016/s0022-2836(77)80096-x. [DOI] [PubMed] [Google Scholar]
  17. Sternberg N., Tiemeier D., Enquist L. In vitro packaging of a lambda Dam vector containing EcoRI DNA fragments of Escherichia coli and phage P1. Gene. 1977 May;1(3-4):255–280. doi: 10.1016/0378-1119(77)90049-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES