Abstract
We have analyzed the 2E1-3A1 area of the X chromosome with special attention to loci related to embryogenesis. Published maps indicate that this chromosomal segment contains ten bands. Our genetic analysis has identified 11 complementation groups: one recessive visible (prune), two female steriles and eight lethals. One of the female sterile loci is fs(1)k10 for which homozygous females produce both egg chambers and embryos with a dorsalized morphology. The second female sterile is the paternally rescuable fs(1)pecanex in which unrescued embryos have a hypertrophic nervous system. Of the eight lethal complementation groups two are recessive embryonic lethals: hemizygous giant (gt) embryos possess segmental defects, and hemizygous crooked neck (crn) embryos exhibit a twisted phenotype. Analysis of these mutations in the female germ line indicates that gt does not show a maternal effect, whereas normal activity of crn is required for germ cell viability. Analysis of the maternal effect in germ line clones of the remaining six recessive lethal complementation groups indicates that four are required for germ cell viability and one produces ambiguous results for survival of the germ cells. The remaining, l(1)pole hole, is a recessive early pupal lethal in which embryos derived from germ line clones and lacking wild-type gene activity exhibit the "torso" or "pole hole" phenotype.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Judd B. H., Shen M. W., Kaufman T. C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics. 1972 May;71(1):139–156. doi: 10.1093/genetics/71.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawrence P. A., Johnston P., Struhl G. Different requirements for homeotic genes in the soma and germ line of Drosophila. Cell. 1983 Nov;35(1):27–34. doi: 10.1016/0092-8674(83)90204-0. [DOI] [PubMed] [Google Scholar]
- Lefevre G. The distribution of randomly recovered X-ray-induced sex-linked genetic effects in Drosophila melanogaster. Genetics. 1981 Nov-Dec;99(3-4):461–480. doi: 10.1093/genetics/99.3-4.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis E. B. A gene complex controlling segmentation in Drosophila. Nature. 1978 Dec 7;276(5688):565–570. doi: 10.1038/276565a0. [DOI] [PubMed] [Google Scholar]
- Lewis R. A., Kaufman T. C., Denell R. E., Tallerico P. Genetic Analysis of the Antennapedia Gene Complex (Ant-C) and Adjacent Chromosomal Regions of DROSOPHILA MELANOGASTER. I. Polytene Chromosome Segments 84b-D. Genetics. 1980 Jun;95(2):367–381. doi: 10.1093/genetics/95.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis R. A., Wakimoto B. T., Denell R. E., Kaufman T. C. Genetic Analysis of the Antennapedia Gene Complex (Ant-C) and Adjacent Chromosomal Regions of DROSOPHILA MELANOGASTER. II. Polytene Chromosome Segments 84A-84B1,2. Genetics. 1980 Jun;95(2):383–397. doi: 10.1093/genetics/95.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohler J. D. Developmental genetics of the Drosophila egg. I. Identification of 59 sex-linked cistrons with maternal effects on embryonic development. Genetics. 1977 Feb;85(2):259–272. doi: 10.1093/genetics/85.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perrimon N., Gans M. Clonal analysis of the tissue specificity of recessive female-sterile mutations of Drosophila melanogaster using a dominant female-sterile mutation Fs(1)K1237. Dev Biol. 1983 Dec;100(2):365–373. doi: 10.1016/0012-1606(83)90231-2. [DOI] [PubMed] [Google Scholar]