Abstract
Translocations have long been valued for their segregational properties. This paper extends the utility of translocations by considering recombinational derivatives of pairs of simple reciprocal translocations. Three major derivative structures are noted. One of these derivatives is suitable for use in half-tetrad experiments. A second should find use in recombining markers with translocation breakpoints. The third is an insertional-tandem duplication: it has a section of one chromosome inserted into a heterologue with a section of the latter chromosome tandemly repeated about the breaks of the insert. All of these structures are contained in "constellations" of chromosomes that regularly segregate aneuploid-1 products (informationally equivalent to nonrecombinant adjacent-1 segregants) for one of the parental translocations but do not segregate euploid products. This is in contrast to the parental T1/T2 constellations which segregate euploid products but not aneuploid-1 products. Methods are described for selecting translocation recombinants on the basis of this dichotomy. Several examples of translocation recombinants have been recovered with these techniques, and the recombination frequencies seem to be consistent with those observed for crossovers between inversion breakpoints. Recombinant chromosomes tend to disjoin, but it is observed that the tendency may vary according to the region involved in the recombination, and it is suggested that this difference reflects a difference in chiasmata terminalization times. Special consideration is given to insertional-tandem duplications. Large insertional-tandem duplications are useful in cytogenetic screens. Small insertional-tandem duplications are useful in gene dosage studies and other experiments that require an insert from one chromosome to another. Large duplications can be deleted to form small duplications. To generate a small insert for a specified region, it is only necessary to have one translocation with a breakpoint flanking the region of interest. The second translocation can have a breakpoint quite far from the region: an insertional-tandem duplication containing the region that has one closely flanking breakpoint can be deleted to create a smaller duplication that has two closely flanking breakpoints.
Full Text
The Full Text of this article is available as a PDF (875.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E G. Crossing over in a Case of Attached X Chromosomes in DROSOPHILA MELANOGASTER. Genetics. 1925 Sep;10(5):403–417. doi: 10.1093/genetics/10.5.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin M., Chovnick A. Autosomal half-tetrad analysis in Drosophila melanogaster. Genetics. 1967 Feb;55(2):277–293. doi: 10.1093/genetics/55.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]