Skip to main content
Genetics logoLink to Genetics
. 1986 May;113(1):187–213. doi: 10.1093/genetics/113.1.187

Evolutionary Change of Restriction Cleavage Sites and Phylogenetic Inference

Wen-Hsiung Li 1
PMCID: PMC1202797  PMID: 3011589

Abstract

Mathematical formulas are developed for the evolutionary change of restriction cleavage sites in a DNA sequence, allowing unequal rates between transitional and transversional types of nucleotide substitution. Formulas are also developed for the probability of having a particular pattern of site changes among evolutionary lineages, such as parallel gains or losses of sites, and for inferring the presence or absence of a restriction site in an ancestral sequence from data on the present-day sequences. The unordered compatibility method is proposed for inferring the phylogenetic relationships among relatively closely related organisms, treating restriction sites as cladistic characters. Formulas are derived for the probability (P+) of obtaining the correct network for a given number (N) of informative sites for the cases of four and five species. These formulas are applied to evaluate the performance of the method and to estimate the N value required for P+ to be 95% or larger. The method performs well when the branches between ancestral nodes and the branches leading to the two most recent species are more or less equal in length, but performs poorly when the latter two branches are considerably longer than the former.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Aquadro C. F., Greenberg B. D. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals. Genetics. 1983 Feb;103(2):287–312. doi: 10.1093/genetics/103.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avise J. C., Lansman R. A., Shade R. O. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics. 1979 May;92(1):279–295. doi: 10.1093/genetics/92.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferris S. D., Wilson A. C., Brown W. M. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2432–2436. doi: 10.1073/pnas.78.4.2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fitch W. M. Evidence suggesting a non-random character to nucleotide replacements in naturally occurring mutations. J Mol Biol. 1967 Jun 28;26(3):499–507. doi: 10.1016/0022-2836(67)90317-8. [DOI] [PubMed] [Google Scholar]
  7. Fitch W. M., Margoliash E. Construction of phylogenetic trees. Science. 1967 Jan 20;155(3760):279–284. doi: 10.1126/science.155.3760.279. [DOI] [PubMed] [Google Scholar]
  8. Li W. H., Wu C. I., Luo C. C. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J Mol Evol. 1984;21(1):58–71. doi: 10.1007/BF02100628. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES