Abstract
A mathematical model for nonrandom generalized transduction is proposed and analyzed. The model takes into account the finite number of transducing particle classes for any given marker. The equations for estimation of the distance between markers from cotransduction frequency data are derived and standard errors of the estimates are given. The obtained relationships depend significantly on the number of classes of transducing fragments. The model was applied to estimate the number of transducing fragment classes for a given marker in transduction with phage P22 of Salmonella typhimurium. It was found that the literature data on frequencies of cotransduction in crosses with mutual substitution of selective and nonselective markers can be rationalized most accurately by assuming that the mean number of classes is equal to 2. An improved method for analysis of cotransduction data is proposed on the basis of our model and the results of calculation. The method relies on solving a set of algebraic equations for cotransduction frequencies of markers located within one phage length. The method allows a relatively precise determination of distances between markers, positions of transducing particle ends and deletion or insertion lengths. The approach is applied to the trp-cysB-pyrF and aroC-hisT-purF-dhuA regions of the Salmonella typhimurium chromosome.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eisenstark A., Eisenstark R., Cunningham S. Genetic analysis of thymineless(thy) mutants in Salmonella typhimurium. Genetics. 1968 Apr;58(4):493–506. doi: 10.1093/genetics/58.4.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enomoto M. Composition of chromosome fragments participating in phage P22-mediated transduction of Salmonella typhimurium. Virology. 1967 Nov;33(3):474–482. doi: 10.1016/0042-6822(67)90123-7. [DOI] [PubMed] [Google Scholar]
- Kemper J. Gene order and co-transduction in the leu-ara-fol-pyrA region of the Salmonella typhimurium linkage map. J Bacteriol. 1974 Jan;117(1):94–99. doi: 10.1128/jb.117.1.94-99.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
- Krajewska-Grynkiewicz K., Kłopotowski T. Altered linkage values in phage P22--mediated transduction caused by distant deletions or insertions in donor chromosomes. Mol Gen Genet. 1979 Oct 2;176(1):87–93. doi: 10.1007/BF00334299. [DOI] [PubMed] [Google Scholar]
- Krajewska-Grynkiewicz K., Walczak W., Klopotowski T. Mutants of Salmonella typhimurium able to utilize D-histidine as a source of L-histidine. J Bacteriol. 1971 Jan;105(1):28–37. doi: 10.1128/jb.105.1.28-37.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langley D., Guest J. R. Biochemical and genetic characterics of deletion and other mutant strains of Salmonella typhimurium LT2 lacking alpha-keto acid dehydrogenase complex activities,. J Gen Microbiol. 1974 Jun;82(2):319–335. doi: 10.1099/00221287-82-2-319. [DOI] [PubMed] [Google Scholar]
- Ozeki H. Chromosome Fragments Participating in Transduction in Salmonella Typhimurium. Genetics. 1959 May;44(3):457–470. doi: 10.1093/genetics/44.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce U., Stocker B. A. Variation in composition of chromosome fragments transduced by phage P22. Virology. 1965 Nov;27(3):290–296. doi: 10.1016/0042-6822(65)90108-x. [DOI] [PubMed] [Google Scholar]
- Schmieger H., Backhaus H. Altered cotransduction frequencies exhibited by HT-mutants of Salmonella-phage P22. Mol Gen Genet. 1976 Feb 2;143(3):307–309. doi: 10.1007/BF00269408. [DOI] [PubMed] [Google Scholar]
- Smith H. O., Levine M. A phage P22 gene controlling integration of prophage. Virology. 1967 Feb;31(2):207–216. doi: 10.1016/0042-6822(67)90164-x. [DOI] [PubMed] [Google Scholar]
- Stuttard C. Location of trpR mutations in the serB-thr region of Salmonella typhimurium. J Bacteriol. 1972 Aug;111(2):368–374. doi: 10.1128/jb.111.2.368-374.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Susskind M. M., Botstein D. Molecular genetics of bacteriophage P22. Microbiol Rev. 1978 Jun;42(2):385–413. doi: 10.1128/mr.42.2.385-413.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wild J., Walczak W., Krajewska-Grynkiewicz K., Klopotowski T. D-amino acid dehydrogenase: the enzyme of the first step of D-histidine and D-methionine racemization in Salmonella typhimurium. Mol Gen Genet. 1974;128(2):131–146. doi: 10.1007/BF02654486. [DOI] [PubMed] [Google Scholar]
- Wu T. T. A model for three-point analysis of random general transduction. Genetics. 1966 Aug;54(2):405–410. doi: 10.1093/genetics/54.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]