Skip to main content
Genetics logoLink to Genetics
. 1986 Nov;114(3):753–767. doi: 10.1093/genetics/114.3.753

Thymidine Utilization by tut Mutants and Facile Cloning of Mutant Alleles by Plasmid Conversion in S. CEREVISIAE

Robert A Sclafani 1,2, Walton L Fangman 1,2
PMCID: PMC1203012  PMID: 3025059

Abstract

Plasmid pJM81 contains a Herpes simplex virus thymidine kinase (TK) gene that is expressed in yeast. Cells containing the plasmid utilize thymidine (TdR) and the analogue 5-bromodeoxyuridine (BUdR) for specific incorporation into DNA. TdR auxotrophs, harboring plasmid pJM81 and a mutation in the yeast gene TMP1 require high concentrations of TdR (300 µg/ml) to support normal growth rates and the wild-type mitochondrial genome (ρ +) cannot be maintained. We have identified a yeast gene, TUT1, in which recessive mutations allow efficient utilization of lower concentrations of TdR. Strains containing the mutations tmp1 and tut1, as well as plasmid pJM81, form colonies at 2 µg/ml TdR, grow at nearly normal rates and maintain the ρ+ genome at 50 µg/ml TdR. These strains can be used to radiolabel DNA specifically and to synchronize DNA replication by TdR starvation. In addition, the substitution of BUdR for TdR allows the selective killing of DNA-synthesizing cells by 310-nm irradiation and allows the separation of replicated and unreplicated forms of DNA by CsCl equilibrium density banding. We also describe a unique, generally applicable system for cloning mutant alleles that exploits the fact that Tk+ yeast cells are sensitive to 5-fluorodeoxyuridine (FUdR) and that gene conversions can occur between a yeast chromosome and a TK-containing plasmid.

Full Text

The Full Text of this article is available as a PDF (892.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONHOEFFER F., SCHALLER H. A METHOD FOR SELECTIVE ENRICHMENT OF MUTANTS BASED ON THE HIGH UV SENSITIVITY OF DNA CONTAINING 5-BROMOURACIL. Biochem Biophys Res Commun. 1965 Jun 18;20:93–97. [PubMed] [Google Scholar]
  2. Barclay B. J., Little J. G. Genetic damage during thymidylate starvation in Saccharomyces cerevisiae. Mol Gen Genet. 1978 Mar 20;160(1):33–40. doi: 10.1007/BF00275116. [DOI] [PubMed] [Google Scholar]
  3. Bisson L. F., Thorner J. Exogenous dTMP utilization by a novel tup mutant of Saccharomyces cerevisiae. J Bacteriol. 1982 Oct;152(1):111–119. doi: 10.1128/jb.152.1.111-119.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bisson L., Thorner J. Thymidine 5'-monophosphate-requiring mutants of Saccharomyces cerevisiae are deficient in thymidylate synthetase. J Bacteriol. 1977 Oct;132(1):44–50. doi: 10.1128/jb.132.1.44-50.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brendel M., Fäth W. W. Isolation and characterization of mutants of Saccharomyces cerevisiae auxotrophic and conditionally auxotrophic for 5'-dTMP. Z Naturforsch C. 1974 Nov-Dec;29(11-12):733–738. doi: 10.1515/znc-1974-11-1214. [DOI] [PubMed] [Google Scholar]
  6. Carl P. L. Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol Gen Genet. 1970;109(2):107–122. doi: 10.1007/BF00269647. [DOI] [PubMed] [Google Scholar]
  7. Culotti J., Hartwell L. H. Genetic control of the cell division cycle in yeast. 3. Seven genes controlling nuclear division. Exp Cell Res. 1971 Aug;67(2):389–401. doi: 10.1016/0014-4827(71)90424-1. [DOI] [PubMed] [Google Scholar]
  8. Grenson M. The utilization of exogenous pyrimidines and the recycling of uridine-5'-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur J Biochem. 1969 Dec;11(2):249–260. doi: 10.1111/j.1432-1033.1969.tb00767.x. [DOI] [PubMed] [Google Scholar]
  9. Grivell A. R., Jackson J. F. Thymidine kinase: evidence for its absence from Neurospora crassa and some other micro-organisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J Gen Microbiol. 1968 Dec;54(2):307–317. doi: 10.1099/00221287-54-2-307. [DOI] [PubMed] [Google Scholar]
  10. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  13. Sclafani R. A., Fangman W. L. Yeast gene CDC8 encodes thymidylate kinase and is complemented by herpes thymidine kinase gene TK. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5821–5825. doi: 10.1073/pnas.81.18.5821. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES