Skip to main content
Genetics logoLink to Genetics
. 1988 Jan;118(1):87–101. doi: 10.1093/genetics/118.1.87

The Influence of Whole-Arm Trisomy on Gene Expression in Drosophila

R H Devlin 1, D G Holm 1, T A Grigliatti 1
PMCID: PMC1203269  PMID: 8608935

Abstract

The biochemical consequences of extensive aneuploidy in Drosophila have been examined by measuring the levels of specific proteins in larvae trisomic for entire chromosome arms. By far the most common effect is a reduction in gene product levels (per gene template) by one-third from the diploid quantity, consistent with the model that concentration-dependent repressors of these loci reside on the duplicated chromosome arms. Most loci appear sensitive to such repression in one or more of the trisomies examined, suggesting that such regulatory loci might be quite common. Repression of gene-product levels in trisomies may significantly contribute to their inviability. Few loci are activated in trisomies implying that most factors necessary for gene expression are in excess. While autosomal trisomies can repress the expression of both X-linked and autosomal loci, X-chromosomal trisomies have little effect on most autosomal genes. A family of genes coding for larval serum proteins do not respond similarly in trisomies, suggesting that regulation operates on a process which is not common to their coordinate regulation. Finally, Adh genes transposed to new chromosomal positions maintain their ability to be repressed in 3L trisomies suggesting that this response to regulation involves a closely linked cis-acting regulatory element.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashburner M., Bonner J. J. The induction of gene activity in drosophilia by heat shock. Cell. 1979 Jun;17(2):241–254. doi: 10.1016/0092-8674(79)90150-8. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M. The mechanism of action of ethanolamine deaminase. I. Studies with isotopic hydrogen and oxygen. J Biol Chem. 1969 Jan 25;244(2):449–456. [PubMed] [Google Scholar]
  3. Belote J. M., Lucchesi J. C. Male-specific lethal mutations of Drosophila melanogaster. Genetics. 1980 Sep;96(1):165–186. doi: 10.1093/genetics/96.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bewley G. C., Laurie-Ahlberg C. C. Genetic variation affecting the expression of catalase in Drosophila melanogaster: correlations with rates of enzyme synthesis and degradation. Genetics. 1984 Mar;106(3):435–448. doi: 10.1093/genetics/106.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bijlsma R. Polymorphism at the G6pd and 6Pgd loci in Drosophila melanogaster. IV. Genetic factors modifying enzyme activity. Biochem Genet. 1980 Aug;18(7-8):699–715. doi: 10.1007/BF00484587. [DOI] [PubMed] [Google Scholar]
  6. Birchler J. A., Newton K. J. Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics. 1981 Oct;99(2):247–266. doi: 10.1093/genetics/99.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Birchler J. A. The genetic basis of dosage compensation of alcohol dehydrogenase-1 in maize. Genetics. 1981 Mar;97(3-4):625–637. doi: 10.1093/genetics/97.3-4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Botas J., Moscoso del Prado J., García-Bellido A. Gene-dose titration analysis in the search of trans-regulatory genes in Drosophila. EMBO J. 1982;1(3):307–310. doi: 10.1002/j.1460-2075.1982.tb01165.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
  10. Brock H. W., Roberts D. B. Comparison of the larval serum proteins of Drosophila melanogaster using one and two-dimensional peptide mapping. Eur J Biochem. 1980 May;106(1):129–135. doi: 10.1111/j.1432-1033.1980.tb06003.x. [DOI] [PubMed] [Google Scholar]
  11. Carlson P. S. Locating genetic loci with aneuploids. Mol Gen Genet. 1972;114(4):273–280. doi: 10.1007/BF00267495. [DOI] [PubMed] [Google Scholar]
  12. Delaney S. J., Smith D. F., McClelland A., Sunkel C., Glover D. M. Sequence conservation around the 5' ends of the larval serum protein 1 genes of Drosophila melanogaster. J Mol Biol. 1986 May 5;189(1):1–11. doi: 10.1016/0022-2836(86)90376-1. [DOI] [PubMed] [Google Scholar]
  13. Goldberg D. A. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5794–5798. doi: 10.1073/pnas.77.10.5794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldberg D. A., Posakony J. W., Maniatis T. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line. Cell. 1983 Aug;34(1):59–73. doi: 10.1016/0092-8674(83)90136-8. [DOI] [PubMed] [Google Scholar]
  15. Guarente L. Yeast promoters: positive and negative elements. Cell. 1984 Apr;36(4):799–800. doi: 10.1016/0092-8674(84)90028-x. [DOI] [PubMed] [Google Scholar]
  16. Johnson G., Finnerty V., Hartl D. Post-translation modification of xanthine dehydrogenase in a natural population of Drosophila melanogaster. Genetics. 1981 Aug;98(4):817–831. doi: 10.1093/genetics/98.4.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. King J. J., McDonald J. F. Genetic Localization and Biochemical Characterization of a TRANS-Acting Regulatory Effect in Drosophila. Genetics. 1983 Sep;105(1):55–69. doi: 10.1093/genetics/105.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klose J., Putz B. Analysis of two-dimensional protein patterns from mouse embryos with different trisomies. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3753–3757. doi: 10.1073/pnas.80.12.3753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Laurie-Ahlberg C. C., Maroni G., Bewley G. C., Lucchesi J. C., Weir B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. doi: 10.1073/pnas.77.2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laurie-Ahlberg C. C., Wilton A. N., Curtsinger J. W., Emigh T. H. Naturally occurring enzyme activity variation in Drosophila melanogaster. I. Sources of variation for 23 enzymes. Genetics. 1982 Oct;102(2):191–206. doi: 10.1093/genetics/102.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lewis E. B. A gene complex controlling segmentation in Drosophila. Nature. 1978 Dec 7;276(5688):565–570. doi: 10.1038/276565a0. [DOI] [PubMed] [Google Scholar]
  24. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MELLMAN W. J., OSKI F. A., TEDESCO T. A., MACIERA-COELHO A., HARRIS H. LEUCOCYTE ENZYMES IN DOWN'S SYNDROME. Lancet. 1964 Sep 26;2(7361):674–675. doi: 10.1016/s0140-6736(64)92483-3. [DOI] [PubMed] [Google Scholar]
  26. Maroni G., Laurie-Ahlberg C. C. Genetic control of Adh expression in Drosophila melanogaster. Genetics. 1983 Dec;105(4):921–933. doi: 10.1093/genetics/105.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maroni G., Lucchesi J. C. X-chromosome transcription in Drosophila. Chromosoma. 1980;77(3):253–261. doi: 10.1007/BF00286051. [DOI] [PubMed] [Google Scholar]
  28. Maroni G., Plaut W. Dosage compensation in Drosophila melanogaster triploids. I. Autoradiographic study. Chromosoma. 1973;40(4):361–377. doi: 10.1007/BF00399428. [DOI] [PubMed] [Google Scholar]
  29. Miyashita N., Laurie-Ahlberg C. C. Genetical analysis of chromosomal interaction effects on the activities of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases in Drosophila melanogaster. Genetics. 1984 Apr;106(4):655–668. doi: 10.1093/genetics/106.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Paigen K. Acid hydrolases as models of genetic control. Annu Rev Genet. 1979;13:417–466. doi: 10.1146/annurev.ge.13.120179.002221. [DOI] [PubMed] [Google Scholar]
  31. Pipkin S. B., Hewitt N. E. Effect of gene dosage on level of alcohol dehydrogenase in Drosophila. J Hered. 1972 Nov-Dec;63(6):331–336. doi: 10.1093/oxfordjournals.jhered.a108310. [DOI] [PubMed] [Google Scholar]
  32. Powell D., Sato J. D., Brock H. W., Roberts D. B. Regulation of synthesis of the larval serum proteins of Drosophila melanogaster. Dev Biol. 1984 Mar;102(1):206–215. doi: 10.1016/0012-1606(84)90185-4. [DOI] [PubMed] [Google Scholar]
  33. Rawls J. M., Jr, Lucchesi J. C. Regulation of enzyme activities in Drosophila. I. The detection of regulatory loci by gene dosage responses. Genet Res. 1974 Aug;24(1):59–72. doi: 10.1017/s001667230001507x. [DOI] [PubMed] [Google Scholar]
  34. Roberts D. B., Blackwell S. A., Loughlin S. A. Quantitative analysis of the amount of larval serum protein-1 (LSP-1) synthesized by flies with different doses of the LSP-1 coding sequences. Biochem Genet. 1984 Oct;22(9-10):783–795. doi: 10.1007/BF00499473. [DOI] [PubMed] [Google Scholar]
  35. Roberts D. B., Evans-Roberts S. The X-linked alpha-chain gene of Drosophila LSP-1 does not show dosage compensation. Nature. 1979 Aug 23;280(5724):691–692. doi: 10.1038/280691a0. [DOI] [PubMed] [Google Scholar]
  36. Roberts D. B., Evans-Roberts S. The genetic and cytogenetic localization of the three structural genes coding for the major protein of drosophila larval serum. Genetics. 1979 Nov;93(3):663–679. doi: 10.1093/genetics/93.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schwartz D. The application of the maize-derived gene competition model to the problem of dosage compensation in Drosophila. Genetics. 1973 Dec;75(4):639–641. doi: 10.1093/genetics/75.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith D. F., McClelland A., White B. N., Addison C. F., Glover D. M. The molecular cloning of a dispersed set of developmentally regulated genes which encode the major larval serum protein of D. melanogaster. Cell. 1981 Feb;23(2):441–449. doi: 10.1016/0092-8674(81)90139-2. [DOI] [PubMed] [Google Scholar]
  39. Sofer W., Ursprung H. Drosophila alcohol dehydrogenase. Purification and partial characterization. J Biol Chem. 1968 Jun 10;243(11):3110–3115. [PubMed] [Google Scholar]
  40. Spradling A. C., Rubin G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell. 1983 Aug;34(1):47–57. doi: 10.1016/0092-8674(83)90135-6. [DOI] [PubMed] [Google Scholar]
  41. Twardzik D. R., Grell E. H., Jacobson K. B. Mechanism of suppression in Drosophila: a change in tyrosine transfer RNA. J Mol Biol. 1971 Apr 28;57(2):231–245. doi: 10.1016/0022-2836(71)90343-3. [DOI] [PubMed] [Google Scholar]
  42. Williamson J. H., Bentley M. M. Dosage compensation in Drosophila: NADP-enzyme activities and cross-reacting material. Genetics. 1983 Apr;103(4):649–658. doi: 10.1093/genetics/103.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilton A. N., Laurie-Ahlberg C. C., Emigh T. H., Curtsinger J. W. Naturally occurring enzyme activity variation in Drosophila melanogaster. II. Relationships among enzymes. Genetics. 1982 Oct;102(2):207–221. doi: 10.1093/genetics/102.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES