Skip to main content
Genetics logoLink to Genetics
. 1990 Jun;125(2):305–312. doi: 10.1093/genetics/125.2.305

Trk2 Is Required for Low Affinity K(+) Transport in Saccharomyces Cerevisiae

C H Ko 1, A M Buckley 1, R F Gaber 1
PMCID: PMC1204020  PMID: 2199312

Abstract

TRK1, the gene encoding the high affinity K(+) transporter in Saccharomyces cerevisiae, is nonessential due to the existence of a functionally independent low affinity transporter. To identify the gene(s) encoding the low affinity K(+) transporter, we screened trk1 Δ cells for mutants (Kla(-)) that require higher concentrations of K(+) in the medium to support growth. trk1 Δ trk2 mutants require up to tenfold higher concentrations of K(+) to exhibit normal growth compared to trk1 Δ TRK2 cells. K(+) and (86)Rb(+) transport assays demonstrate that the mutant phenotype is due to defective K(+) transport (uptake). Each of 38 independent mutants contains a mutation in the same gene, TRK2. Cells deficient for both high and low affinity K(+) transport (trk1 Δ trk2) exhibit hypersensitivity to low extracellular pH that can be suppressed by high concentrations of K(+) but not Na(+). TRK1 completely suppresses both the K(+) transport defect and low pH hypersensitivity of trk2 cells, suggesting that TRK1 and TRK2 are functionally independent.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth I. R., Epstein W., Giffard P. M., Rowland G. C. Roles of the trkB and trkC gene products of Escherichia coli in K+ transport. Biochimie. 1985 Jan;67(1):83–89. doi: 10.1016/s0300-9084(85)80233-9. [DOI] [PubMed] [Google Scholar]
  2. Carle G. F., Olson M. V. An electrophoretic karyotype for yeast. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3756–3760. doi: 10.1073/pnas.82.11.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epstein W., Wieczorek L., Siebers A., Altendorf K. Potassium transport in Escherichia coli: genetic and biochemical characterization of the K+-transporting ATPase. Biochem Soc Trans. 1984 Apr;12(2):235–236. doi: 10.1042/bst0120235. [DOI] [PubMed] [Google Scholar]
  4. Gaber R. F., Styles C. A., Fink G. R. TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jul;8(7):2848–2859. doi: 10.1128/mcb.8.7.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinnebusch A. G., Fink G. R. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5374–5378. doi: 10.1073/pnas.80.17.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Laimins L. A., Rhoads D. B., Altendorf K., Epstein W. Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3216–3219. doi: 10.1073/pnas.75.7.3216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Linder P., Slonimski P. P. An essential yeast protein, encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2286–2290. doi: 10.1073/pnas.86.7.2286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Perkins D. D. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. doi: 10.1093/genetics/34.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rhoads D. B., Waters F. B., Epstein W. Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol. 1976 Mar;67(3):325–341. doi: 10.1085/jgp.67.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rodríguez-Navarro A., Ramos J. Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol. 1984 Sep;159(3):940–945. doi: 10.1128/jb.159.3.940-945.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Trout W. E., Kaplan W. D. Genetic manipulation of motor output in shaker mutants of Drosophila. J Neurobiol. 1973;4(6):495–512. doi: 10.1002/neu.480040603. [DOI] [PubMed] [Google Scholar]
  13. Vidal M., Buckley A. M., Hilger F., Gaber R. F. Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae. Genetics. 1990 Jun;125(2):313–320. doi: 10.1093/genetics/125.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES