Abstract
Environmental and genetic components of specific activity variation at the phosphoglucomutase-2 locus in the Pacific oyster, Crassostrea gigas, were examined to assess the direct role played by this polymorphism in a heterozygosity/growth relationship. Both environmental variables studied, season and intertidal position, exerted highly significant effects on phosphoglucomutase specific activity but no interactions occurred between these factors and Pgm-2 genotype. Highly significant differences were also detected between Pgm-2 genotypes. The three most common heterozygotes (Pgm-2(92/100), Pgm-2(96/100) and Pgm-2(100/104)) consistently expressed greater specific activities than the Pgm-2(92/92), Pgm-2(96/96), Pgm-2(100/100) and Pgm-2(104/104) homozygotes. Overall, the specific activities of heterozygotes for the Pgm-2(100) allele exceeded heterozygotes by 24% and 20% in the mantle and adductor muscle tissues, respectively. Heterozygotes formed between the three less frequent Pgm-2(92), Pgm-2(96) and Pgm-2(104) alleles differed sharply from those possessing the Pgm-2(100) allele in being indistinguishable from homozygotes. The possibility of these patterns arising from the undetected presence of an inactive Pgm-2 allele was examined and found to be inconsistent with all of its predicted effects on the specific activity data. Genuine overdominance was shown to be capable of explaining the specific activities of ten structural locus genotypes, allelic frequency distributions in natural populations, and the maintenance of the enzyme polymorphism in a balanced state. The results provide evidence favoring the overdominance explanation for one locus involved in a heterozygosity/growth relationship and suggest that the reported effects of this locus on adult body weight may have been caused by the greater flux capacities of heterozygotes for the Pgm-2(100) allele.
Full Text
The Full Text of this article is available as a PDF (882.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Burton R. S., Feldman M. W. Physiological effects of an allozyme polymorphism: glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepod Tigriopus californicus. Biochem Genet. 1983 Apr;21(3-4):239–251. doi: 10.1007/BF00499136. [DOI] [PubMed] [Google Scholar]
- Chakraborty R. Can molecular imprinting explain heterozygote deficiency and hybrid vigor? Genetics. 1989 Jul;122(3):713–717. doi: 10.1093/genetics/122.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke B. The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci. Genetics. 1975 Jun;79 (Suppl):101–113. [PubMed] [Google Scholar]
- Dickinson W. J. A genetic locus affecting the developmental expression of an enzyme in Drosophilia melanogaster. Dev Biol. 1975 Jan;42(1):131–140. doi: 10.1016/0012-1606(75)90319-x. [DOI] [PubMed] [Google Scholar]
- Dickinson W. J., Rowan R. G., Brennan M. D. Regulatory gene evolution: adaptive differences in expression of alcohol dehydrogenase in Drosophila melanogaster and Drosophila simulans. Heredity (Edinb) 1984 Apr;52(Pt 2):215–225. doi: 10.1038/hdy.1984.23. [DOI] [PubMed] [Google Scholar]
- Doane W. W., Treat-Clemons L. G., Gemmill R. M., Levy J. N., Hawley S. A., Buchberg A. M., Paigen K. Genetic mechanism for tissue-specific control of alpha-amylase expression in Drosophila melanogaster. Isozymes Curr Top Biol Med Res. 1983;9:63–90. [PubMed] [Google Scholar]
- Gillespie J. H., Langley C. H. A general model to account for enzyme variation in natural populations. Genetics. 1974 Apr;76(4):837–848. doi: 10.1093/genetics/76.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartl D. L., Dykhuizen D. E., Dean A. M. Limits of adaptation: the evolution of selective neutrality. Genetics. 1985 Nov;111(3):655–674. doi: 10.1093/genetics/111.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King J. J., McDonald J. F. Post-translational control of alcohol dehydrogenase levels in Drosophila melanogaster. Genetics. 1987 Apr;115(4):693–699. doi: 10.1093/genetics/115.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koehn R. K., Diehl W. J., Scott T. M. The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth rate in the coot clam, Mulinia lateralis. Genetics. 1988 Jan;118(1):121–130. doi: 10.1093/genetics/118.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koehn R. K. Esterase heterogeneity: dynamics of a polymorphism. Science. 1969 Feb 28;163(3870):943–944. doi: 10.1126/science.163.3870.943. [DOI] [PubMed] [Google Scholar]
- Laurie-Ahlberg C. C. Genetic variation affecting the expression of enzyme-coding genes in Drosophila: an evolutionary perspective. Isozymes Curr Top Biol Med Res. 1985;12:33–88. [PubMed] [Google Scholar]
- Lewontin R. C., Ginzburg L. R., Tuljapurkar S. D. Heterosis as an explanation for large amounts of genic polymorphism. Genetics. 1978 Jan;88(1):149–169. doi: 10.1093/genetics/88.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ota T. Associative overdominance caused by linked detrimental mutations. Genet Res. 1971 Dec;18(3):277–286. [PubMed] [Google Scholar]
- Ottaway J. H., Mowbray J. The role of compartmentation in the control of glycolysis. Curr Top Cell Regul. 1977;12:107–208. doi: 10.1016/b978-0-12-152812-6.50010-x. [DOI] [PubMed] [Google Scholar]
- Pogson G. H. Biochemical characterization of genotypes at the phosphoglucomutase-2 locus in the Pacific oyster, Crassostrea gigas. Biochem Genet. 1989 Oct;27(9-10):571–589. [PubMed] [Google Scholar]
- Powers D. A., DiMichele L., Place A. R. The use of enzyme kinetics to predict differences in cellular metabolism, developmental rate, and swimming performance between LDH-B genotypes of the fish, fundulus heteroclitus. Isozymes Curr Top Biol Med Res. 1983;10:147–170. [PubMed] [Google Scholar]
- Shaffer J. B., Bewley G. C. Genetic determination of sn-glycerol-3-phosphate dehydrogenase synthesis in Drosophila melanogaster. A cis-acting controlling element. J Biol Chem. 1983 Aug 25;258(16):10027–10033. [PubMed] [Google Scholar]
- Watt W. B. Adaptation at Specific Loci. II. Demographic and Biochemical Elements in the Maintenance of the Colias Pgi Polymorphism. Genetics. 1983 Apr;103(4):691–724. doi: 10.1093/genetics/103.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt W. B. Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of Colias butterflies: Biochemical and population aspects. Genetics. 1977 Sep;87(1):177–194. doi: 10.1093/genetics/87.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zouros E., Foltz D. W. The use of allelic isozyme variation for the study of heterosis. Isozymes Curr Top Biol Med Res. 1987;13:1–59. [PubMed] [Google Scholar]