Abstract
Active and inactive mariner elements from natural and laboratory populations of Drosophila simulans were isolated and sequenced in order to assess their nucleotide variability and to compare them with previously isolated mariner elements from the sibling species Drosophila mauritiana and Drosophila sechellia. The active elements of D. simulans are very similar among themselves (average 99.7% nucleotide identity), suggesting that the level of mariner expression in different natural populations is largely determined by position effects, dosage effects and perhaps other factors. Furthermore, the D. simulans elements exhibit nucleotide identities of 98% or greater when compared with mariner elements from the sibling species. Parsimony analysis of mariner elements places active elements from the three species into separate groups and suggests that D. simulans is the species from which mariner elements in D. mauritiana and D. sechellia are most likely derived. This result strongly suggests that the ancestral form of mariner among these species was an active element. The two inactive mariner elements sequenced from D. simulans are very similar to the inactive peach element from D. mauritiana. The similarity may result from introgression between D. simulans and D. mauritiana or from selective constraints imposed by regulatory effects of inactive elements.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Black D. M., Jackson M. S., Kidwell M. G., Dover G. A. KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO J. 1987 Dec 20;6(13):4125–4135. doi: 10.1002/j.1460-2075.1987.tb02758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bryan G., Garza D., Hartl D. Insertion and excision of the transposable element mariner in Drosophila. Genetics. 1990 May;125(1):103–114. doi: 10.1093/genetics/125.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capy P., Chakrani F., Lemeunier F., Hartl D. L., David J. R. Active mariner transposable elements are widespread in natural populations of Drosophila simulans. Proc Biol Sci. 1990 Oct 22;242(1303):57–60. doi: 10.1098/rspb.1990.0103. [DOI] [PubMed] [Google Scholar]
- Capy P., Maruyama K., David J. R., Hartl D. L. Insertion sites of the transposable element mariner are fixed in the genome of Drosophila sechellia. J Mol Evol. 1991 Nov;33(5):450–456. doi: 10.1007/BF02103137. [DOI] [PubMed] [Google Scholar]
- Cariou M. L. Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet Res. 1987 Dec;50(3):181–185. doi: 10.1017/s0016672300023673. [DOI] [PubMed] [Google Scholar]
- Cariou M. L., Solignac M., Monnerot M., David J. R. Low allozyme and mtDNA variability in the island endemic species Drosophila sechellia (D. melanogaster complex). Experientia. 1990 Jan 15;46(1):101–104. doi: 10.1007/BF01955430. [DOI] [PubMed] [Google Scholar]
- Coyne J. A. Mutation rates in hybrids between sibling species of Drosophila. Heredity (Edinb) 1989 Oct;63(Pt 2):155–162. doi: 10.1038/hdy.1989.87. [DOI] [PubMed] [Google Scholar]
- David J., Lemeunier F., Tsacas L., Bocquet C. Hybridation d'une nouvelle espèce, Drosophila mauritiana avec D. melanogaster et D. simulans. Ann Genet. 1974 Dec;17(4):235–241. [PubMed] [Google Scholar]
- DuBose R. F., Hartl D. L. Rapid purification of PCR products for DNA sequencing using Sepharose CL-6B spin columns. Biotechniques. 1990 Mar;8(3):271–274. [PubMed] [Google Scholar]
- Jacobson J. W. Mariner, Mos and associated aberrant traits in Drosophila mauritiana. Genet Res. 1990 Jun;55(3):153–158. doi: 10.1017/s0016672300025465. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Hartl D. L. Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol. 1991 Dec;33(6):514–524. doi: 10.1007/BF02102804. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Schoor K. D., Hartl D. L. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics. 1991 Aug;128(4):777–784. doi: 10.1093/genetics/128.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misra S., Rio D. C. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell. 1990 Jul 27;62(2):269–284. doi: 10.1016/0092-8674(90)90365-l. [DOI] [PubMed] [Google Scholar]
- R'Kha S., Capy P., David J. R. Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1835–1839. doi: 10.1073/pnas.88.5.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solignac M., Monnerot M., Mounolou J. C. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J Mol Evol. 1986;23(1):31–40. doi: 10.1007/BF02100996. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]