Skip to main content
Genetics logoLink to Genetics
. 1993 May;134(1):251–260. doi: 10.1093/genetics/134.1.251

The Genetic Basis of Haldane's Rule and the Nature of Asymmetric Hybrid Male Sterility among Drosophila Simulans, Drosophila Mauritiana and Drosophila Sechellia

L W Zeng 1, R S Singh 1
PMCID: PMC1205428  PMID: 8514134

Abstract

Haldane's rule (i.e., the preferential hybrid sterility and inviability of heterogametic sex) has been known for 70 years, but its genetic basis, which is crucial to the understanding of the process of species formation, remains unclear. In the present study, we have investigated the genetic basis of hybrid male sterility using Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. An introgression of D. sechellia Y chromosome into a fairly homogenous background of D. simulans did not show any effect of the introgressed Y on male sterility. The substitution of D. simulans Y chromosome into D. sechellia, and both reciprocal Y chromosome substitutions between D. simulans and D. mauritiana were unsuccessful. Introgressions of cytoplasm between D. simulans and D. mauritiana (or D. sechellia) also did not have any effect on hybrid male sterility. These results rule out the X-Y interaction hypothesis as a general explanation of Haldane's rule in this species group and indicate an involvement of an X-autosome interaction. Models of symmetrical and asymmetrical X-autosome interaction have been developed which explain the Y chromosome substitution results and suggest that evolution of interactions between different genetic elements in the early stages of speciation is more likely to be of an asymmetrical nature. The model of asymmetrical X-autosome interaction also predicts that different sets of interacting genes may be involved in different pairs of related species and can account for the observation that hybrid male sterility in many partially isolated species is often nonreciprocal or unidirectional.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coyne J. A., Charlesworth B. Genetic analysis of X-linked sterility in hybrids between three sibling species of Drosophila. Heredity (Edinb) 1989 Feb;62(Pt 1):97–106. doi: 10.1038/hdy.1989.13. [DOI] [PubMed] [Google Scholar]
  2. Coyne J. A., Charlesworth B. Location of an X-linked factor causing sterility in male hybrids of Drosophila simulans and D. mauritiana. Heredity (Edinb) 1986 Oct;57(Pt 2):243–246. doi: 10.1038/hdy.1986.114. [DOI] [PubMed] [Google Scholar]
  3. Coyne J. A. Genetic basis of male sterility in hybrids between two closely related species of Drosophila. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4444–4447. doi: 10.1073/pnas.81.14.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cross Y. Richard Crossman promises action. Nurs Mirror Midwives J. 1969 Apr 4;128(14):10–11. [PubMed] [Google Scholar]
  5. Dobzhansky T. Genetic analysis of hybrid sterility within the species Drosophila pseudoobscura. Hereditas. 1974;77(1):81–88. doi: 10.1111/j.1601-5223.1974.tb01356.x. [DOI] [PubMed] [Google Scholar]
  6. Dobzhansky T., Sturtevant A. H. Further Data on Material Effects in Drosophila Pseudoöbscura Hybrids. Proc Natl Acad Sci U S A. 1935 Oct;21(10):566–570. doi: 10.1073/pnas.21.10.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dobzhansky T. Studies on Hybrid Sterility. II. Localization of Sterility Factors in Drosophila Pseudoobscura Hybrids. Genetics. 1936 Mar;21(2):113–135. doi: 10.1093/genetics/21.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehrman L. APPARENT CYTOPLASMIC STERILITY IN DROSOPHILA PAULISTORUM. Proc Natl Acad Sci U S A. 1963 Feb;49(2):155–157. doi: 10.1073/pnas.49.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hurst L. D., Pomiankowski A. Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane's rule and related phenomena. Genetics. 1991 Aug;128(4):841–858. doi: 10.1093/genetics/128.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson N. A., Perez D. E., Cabot E. L., Hollocher H., Wu C. I. A test of reciprocal X-Y interactions as a cause of hybrid sterility in Drosophila. Nature. 1992 Aug 27;358(6389):751–753. doi: 10.1038/358751a0. [DOI] [PubMed] [Google Scholar]
  11. Johnson N. A., Wu C. I. An empirical test of the meiotic drive models of hybrid sterility: sex-ratio data from hybrids between Drosophila simulans and Drosophila sechellia. Genetics. 1992 Mar;130(3):507–511. doi: 10.1093/genetics/130.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Khadem M., Krimbas C. B. Studies of the species barrier between Drosophila subobscura and D. madeirensis. I. The genetics of male hybrid sterility. Heredity (Edinb) 1991 Oct;67(Pt 2):157–165. doi: 10.1038/hdy.1991.75. [DOI] [PubMed] [Google Scholar]
  13. Nei M., Maruyama T., Wu C. I. Models of evolution of reproductive isolation. Genetics. 1983 Mar;103(3):557–579. doi: 10.1093/genetics/103.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orr H. A., Coyne J. A. The genetics of postzygotic isolation in the Drosophila virilis group. Genetics. 1989 Mar;121(3):527–537. doi: 10.1093/genetics/121.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prakash S. Origin of reproductive isolation in the absence of apparent genic differentiation in a geographic isolate of Drosophila pseudoobscura. Genetics. 1972 Sep;72(1):143–155. doi: 10.1093/genetics/72.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wu C. I., Beckenbach A. T. Evidence for Extensive Genetic Differentiation between the Sex-Ratio and the Standard Arrangement of DROSOPHILA PSEUDOOBSCURA and D. PERSIMILIS and Identification of Hybrid Sterility Factors. Genetics. 1983 Sep;105(1):71–86. doi: 10.1093/genetics/105.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zouros E. Advances in the genetics of reproductive isolation in Drosophila. Genome. 1989;31(1):211–220. doi: 10.1139/g89-036. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES