Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1961 Jun;79(3):614–620. doi: 10.1042/bj0790614

Biosynthesis of C4 acids in Pseudomonas fluorescens KB1

C H Wang 1, G J Ikeda 1,*
PMCID: PMC1205694  PMID: 13783032

Full text

PDF
617

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELSON P. H., BOLTON E. T., ALDOUS E. Utilization of carbon dioxide in the synthesis of proteins by Escherichia coli. II. J Biol Chem. 1952 Sep;198(1):173–178. [PubMed] [Google Scholar]
  2. CHELDELIN V. H., CHRISTENSEN B. E., DAVIS J. W., WANG C. H. Carbon dioxide fixation and biosynthesis of amino acids in yeast. Biochim Biophys Acta. 1956 Jul;21(1):101–105. doi: 10.1016/0006-3002(56)90098-1. [DOI] [PubMed] [Google Scholar]
  3. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  4. FINDLAY M., ROSSITER R. J., STRICKLAND K. P. Factors affecting the incorporation of radioactive phosphate into the pentosenucleic acids of brain slices. Biochem J. 1953 Sep;55(2):200–204. doi: 10.1042/bj0550200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KORNBERG H. L., MADSEN N. B. The metabolism of C2 compounds in microorganisms. 3. Synthesis of malate from acetate via the glyoxylate cycle. Biochem J. 1958 Mar;68(3):549–557. doi: 10.1042/bj0680549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KORNBERG H. L., QUAYLE J. R. The metabolism of C2 compounds in microorganisms. 2. The effect of carbon dioxide on the incorporation of [14C] acetate by acetate-grown Pseudomonas KB1. Biochem J. 1958 Mar;68(3):542–549. doi: 10.1042/bj0680542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LEWIS K. F., BLUMENTHAL H. J., WEINRACH R. S., WEINHOUSE S. An isotope tracer study of glucose catabolism in Pseudomonas fluorescens. J Biol Chem. 1955 Sep;216(1):273–286. [PubMed] [Google Scholar]
  8. NOBLE E. P., REED D. R., WANG C. H. Utilization of acetate, pyruvate, and CO2 by Penicillium digitatum. Can J Microbiol. 1958 Oct;4(5):469–476. doi: 10.1139/m58-050. [DOI] [PubMed] [Google Scholar]
  9. RACUSEN D. W., ARONOFF S. Metabolism of soybean leaves. V. The dark reactions following photosynthesis. Arch Biochem Biophys. 1953 Jan;42(1):25–40. doi: 10.1016/0003-9861(53)90234-3. [DOI] [PubMed] [Google Scholar]
  10. REEVES H. C., AJL S. Occurrence and function of isocitritase and malate synthetase in bacteria. J Bacteriol. 1960 Mar;79:341–345. doi: 10.1128/jb.79.3.341-345.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. STERN I. J., WANG C. H., GILMOUR C. M. Comparative catabolism of carbohydrates in Pseudomonas species. J Bacteriol. 1960 Apr;79:601–611. doi: 10.1128/jb.79.4.601-611.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. STOPPANI A. O., CONCHES L., DE FAVELUKES S. L., SACERDOTE F. L. Assimilation of carbon dioxide by yeasts. Biochem J. 1958 Nov;70(3):438–455. doi: 10.1042/bj0700438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. TOMLINSON N. Carbon dioxide and acetate utilization by Clostridium kluyveri. II. Synthesis of amino acids. J Biol Chem. 1954 Aug;209(2):597–603. [PubMed] [Google Scholar]
  14. UTTER M. F., KURAHASHI K. Mechanism of action of oxalacetic carboxylase. J Biol Chem. 1954 Apr;207(2):821–841. [PubMed] [Google Scholar]
  15. WANG C. H., STERN I., GILMOUR C. M., KLUNGSOYR S., REED D. J., BIALY J. J., CHRISTENSEN B. E., CHELDELIN V. H. Comparative study of glucose catabolism by the radiorespirometric method. J Bacteriol. 1958 Aug;76(2):207–216. doi: 10.1128/jb.76.2.207-216.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WOOD W. A. Pathways of carbohydrate degradation in Pseudomonas fluorescens. Bacteriol Rev. 1955 Dec;19(4):222–233. doi: 10.1128/br.19.4.222-233.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES