Skip to main content
Genetics logoLink to Genetics
. 1993 Nov;135(3):643–654. doi: 10.1093/genetics/135.3.643

Use of High and Low Level Overexpression Plasmids to Test Mutant Alleles of the Recf Gene of Escherichia Coli K-12 for Partial Activity

S J Sandler 1, A J Clark 1
PMCID: PMC1205709  PMID: 8293970

Abstract

We showed that sufficient overexpression of the wild-type recF gene interfered with three normal cell functions: (1) UV induction of transcription from the LexA-protein-repressed sulA promoter, (2) UV resistance and (3) cell viability at 42°. To show this, we altered a low-level overexpressing recF(+) plasmid with a set of structurally neutral mutations that increased the rate of expression of recF. The resulting high-level overexpressing plasmid interfered with UV induction of the sulA promoter, as did the low-level overexpressing plasmid. It also reduced UV resistance more than its low level progenitor and decreased viability at 42°, an effect not seen with the low-level plasmid. We used the high-level plasmid to test four recF structural mutations for residual activity. The structural alleles consisted of an insertion mutation, two single amino acid substitution mutations and a double amino acid substitution mutation. On the Escherichia coli chromosome the three substitution mutations acted similarly to a recF deletion in reducing UV resistance in a recB21 recC22 sbcB15 sbcC201 genetic background. By this test, therefore, all three appeared to be null alleles. Measurements of conjugational recombination revealed, however, that the three substitution mutations may have residual activity. On the high-level overexpressing plasmid all three substitution mutations definitely showed partial activity. By contrast, the insertion mutation on the high-level overexpressing plasmid showed no partial activity and can be considered a true null mutation. One of the substitutions, recF143, showed a property attributable to a leaky mutation. Another substitution, recF4101, may block selectively two of the three interference phenotypes, thus allowing us to infer a mechanism for them.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanar M. A., Sandler S. J., Armengod M. E., Ream L. W., Clark A. J. Molecular analysis of the recF gene of Escherichia coli. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4622–4626. doi: 10.1073/pnas.81.15.4622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ciesla Z., O'Brien P., Clark A. J. Genetic analysis of UV mutagenesis of the Escherichia coli glyU gene. Mol Gen Genet. 1987 Apr;207(1):1–8. doi: 10.1007/BF00331483. [DOI] [PubMed] [Google Scholar]
  3. Clark A. J., Volkert M. R., Margossian L. J. A role for recF in repair of UV damage to DNA. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):887–892. doi: 10.1101/sqb.1979.043.01.096. [DOI] [PubMed] [Google Scholar]
  4. Cohen A., Laban A. Plasmidic recombination in Escherichia coli K-12: the role of recF gene function. Mol Gen Genet. 1983;189(3):471–474. doi: 10.1007/BF00325911. [DOI] [PubMed] [Google Scholar]
  5. Fishel R. A., James A. A., Kolodner R. recA-independent general genetic recombination of plasmids. Nature. 1981 Nov 12;294(5837):184–186. doi: 10.1038/294184a0. [DOI] [PubMed] [Google Scholar]
  6. Ganesan A. K., Hunt J., Hanawalt P. C. Temperature dependent survival of UV-irradiated Escherichia coli K12. Mol Gen Genet. 1988 Oct;214(2):198–203. doi: 10.1007/BF00337711. [DOI] [PubMed] [Google Scholar]
  7. Griffin T. J., 4th, Kolodner R. D. Purification and preliminary characterization of the Escherichia coli K-12 recF protein. J Bacteriol. 1990 Nov;172(11):6291–6299. doi: 10.1128/jb.172.11.6291-6299.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horii Z., Clark A. J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol. 1973 Oct 25;80(2):327–344. doi: 10.1016/0022-2836(73)90176-9. [DOI] [PubMed] [Google Scholar]
  9. Kolodner R., Fishel R. A., Howard M. Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol. 1985 Sep;163(3):1060–1066. doi: 10.1128/jb.163.3.1060-1066.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kushner S. R., Nagaishi H., Templin A., Clark A. J. Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A. 1971 Apr;68(4):824–827. doi: 10.1073/pnas.68.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LURIA S. E., BURROUS J. W. Hybridization between Escherichia coli and Shigella. J Bacteriol. 1957 Oct;74(4):461–476. doi: 10.1128/jb.74.4.461-476.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lloyd R. G., Buckman C. Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12. J Bacteriol. 1985 Nov;164(2):836–844. doi: 10.1128/jb.164.2.836-844.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Loynds B. M., Langford P. R., Kroll J. S. recF in Actinobacillus pleuropneumoniae. Nucleic Acids Res. 1992 Feb 11;20(3):615–615. doi: 10.1093/nar/20.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Madiraju M. V., Clark A. J. Effect of RecF protein on reactions catalyzed by RecA protein. Nucleic Acids Res. 1991 Nov 25;19(22):6295–6300. doi: 10.1093/nar/19.22.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Madiraju M. V., Clark A. J. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J Bacteriol. 1992 Dec;174(23):7705–7710. doi: 10.1128/jb.174.23.7705-7710.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Madiraju M. V., Templin A., Clark A. J. Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6592–6596. doi: 10.1073/pnas.85.18.6592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moreau P. L. Effects of overproduction of single-stranded DNA-binding protein on RecA protein-dependent processes in Escherichia coli. J Mol Biol. 1987 Apr 20;194(4):621–634. doi: 10.1016/0022-2836(87)90239-7. [DOI] [PubMed] [Google Scholar]
  18. Sandler S. J., Chackerian B., Li J. T., Clark A. J. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop. Nucleic Acids Res. 1992 Feb 25;20(4):839–845. doi: 10.1093/nar/20.4.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  20. Sassanfar M., Roberts J. Constitutive and UV-mediated activation of RecA protein: combined effects of recA441 and recF143 mutations and of addition of nucleosides and adenine. J Bacteriol. 1991 Sep;173(18):5869–5875. doi: 10.1128/jb.173.18.5869-5875.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Skovgaard O. Nucleotide sequence of a Proteus mirabilis DNA fragment homologous to the 60K-rnpA-rpmH-dnaA-dnaN-recF-gyrB region of Escherichia coli. Gene. 1990 Sep 1;93(1):27–34. doi: 10.1016/0378-1119(90)90131-a. [DOI] [PubMed] [Google Scholar]
  22. Twigg A. J., Sherratt D. Trans-complementable copy-number mutants of plasmid ColE1. Nature. 1980 Jan 10;283(5743):216–218. doi: 10.1038/283216a0. [DOI] [PubMed] [Google Scholar]
  23. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  24. Volkert M. R. Altered induction of the adaptive response to alkylation damage in Escherichia coli recF mutants. J Bacteriol. 1989 Jan;171(1):99–103. doi: 10.1128/jb.171.1.99-103.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Willetts N. S., Clark A. J., Low B. Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J Bacteriol. 1969 Jan;97(1):244–249. doi: 10.1128/jb.97.1.244-249.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES