Abstract
Spore killing in ascomycetes is a special form of segregation distortion. When a strain with the Killer genotype is crossed to a Sensitive type, spore killing is expressed by asci with only half the number of ascospores as usual, all surviving ascospores being of the Killer type. Using population genetic modeling, this paper explores conditions for invasion of Spore killers and for polymorphism of Killers, Sensitives and Resistants (which neither kill, nor get killed), as found in natural populations. The models show that a population with only Killers and Sensitives can never be stable. The invasion of Killers and stable polymorphism only occur if Killers have some additional advantage during the process of spore killing. This may be due to the effects of local sib competition or some kind of ``heterozygous'' advantage in the stage of ascospore formation or in the short diploid stage of the life cycle. This form of segregation distortion appears to be essentially different from other, well-investigated forms, and more field data are needed for a better understanding of spore killing.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell J. L., Turner B. C. Recombination block in the Spore killer region of Neurospora. Genome. 1987 Feb;29(1):129–135. doi: 10.1139/g87-022. [DOI] [PubMed] [Google Scholar]
- Charlesworth B., Hartl D. L. Population Dynamics of the Segregation Distorter Polymorphism of DROSOPHILA MELANOGASTER. Genetics. 1978 May;89(1):171–192. doi: 10.1093/genetics/89.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammer M. F., Schimenti J., Silver L. M. Evolution of mouse chromosome 17 and the origin of inversions associated with t haplotypes. Proc Natl Acad Sci U S A. 1989 May;86(9):3261–3265. doi: 10.1073/pnas.86.9.3261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kathariou S., Spieth P. T. Spore Killer Polymorphism in FUSARIUM MONILIFORME. Genetics. 1982 Sep;102(1):19–24. doi: 10.1093/genetics/102.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie J. F., Raju N. B. Recessive mutations from natural populations of Neurospora crassa that are expressed in the sexual diplophase. Genetics. 1985 Dec;111(4):759–777. doi: 10.1093/genetics/111.4.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padieu E., Bernet J. Mode d'action des gènes responsables de l'avortement de certains produits de la méisoe chez l'Ascomycète Podospora anserina. C R Acad Sci Hebd Seances Acad Sci D. 1967 May 8;264(19):2300–2303. [PubMed] [Google Scholar]
- Perkins D. D., Barry E. G. The cytogenetics of Neurospora. Adv Genet. 1977;19:133–285. doi: 10.1016/s0065-2660(08)60246-1. [DOI] [PubMed] [Google Scholar]
- Prout T., Bundgaard J., Bryant S. Population genetics of modifiers of meiotic drive. I. The solution of a special case and some general implications. Theor Popul Biol. 1973 Dec;4(4):446–465. doi: 10.1016/0040-5809(73)90020-8. [DOI] [PubMed] [Google Scholar]
- Raju N. B. Cytogenetic behavior of spore killer genes in neurospora. Genetics. 1979 Nov;93(3):607–623. doi: 10.1093/genetics/93.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raju N. B., Perkins D. D. Expression of meiotic drive elements Spore killer-2 and Spore killer-3 in asci of Neurospora tetrasperma. Genetics. 1991 Sep;129(1):25–37. doi: 10.1093/genetics/129.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomson G. J., Feldman M. W. Population genetics of modifiers of meiotic drive. II. Linkage modification in the segregation distortion system. Theor Popul Biol. 1974 Apr;5(2):155–162. doi: 10.1016/0040-5809(74)90038-0. [DOI] [PubMed] [Google Scholar]
- Turner B. C., Perkins D. D. Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics. 1979 Nov;93(3):587–606. doi: 10.1093/genetics/93.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]