Skip to main content
Genetics logoLink to Genetics
. 1994 Jan;136(1):313–322. doi: 10.1093/genetics/136.1.313

Genetic Analysis of Male Reproductive Contributions in Chamaelirium Luteum (L.) Gray (Liliaceae)

P E Smouse 1, T R Meagher 1
PMCID: PMC1205782  PMID: 8138167

Abstract

Genealogical analysis is a powerful tool for analysis of reproductive performance in both natural and captive populations, but assignment of paternity has always been a stumbling block for this sort of work. Statistical methods for determining paternity have undergone several phases of development, ranging from straightforward genetic exclusion to assignment of paternity based on genetic likelihood criteria. In the present study, we present a genetic likelihood-based iterative procedure for fractional allocation of paternity within a progeny pool and apply this method to a population of Chamaelirium luteum, a dioecious member of the Liliaceae. Results from this analysis clearly demonstrate that different males make unequal contributions to the overall progeny pool, with many males contributing essentially nothing to the next generation. Furthermore, the distribution of paternal success among males shows a highly significant departure from (Poisson) randomness. The results from the present analysis were compared with earlier results obtained from the same data set, using likelihood-based categorical paternity assignments. The general biological pattern revealed by the two analyses is the same, but the estimates of reproductive success are only modestly (though significantly) correlated. The iterative procedure makes more complete use of the data and generates a more sharply resolved distribution of male reproductive success.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin M. Some fallacies in the computation of paternity probabilities. Am J Hum Genet. 1984 Jul;36(4):904–915. [PMC free article] [PubMed] [Google Scholar]
  2. Avise J. C., Lansman R. A., Shade R. O. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genus Peromyscus. Genetics. 1979 May;92(1):279–295. doi: 10.1093/genetics/92.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Budowle B., Chakraborty R., Giusti A. M., Eisenberg A. J., Allen R. C. Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet. 1991 Jan;48(1):137–144. [PMC free article] [PubMed] [Google Scholar]
  4. Burke T., Bruford M. W. DNA fingerprinting in birds. Nature. 1987 May 14;327(6118):149–152. doi: 10.1038/327149a0. [DOI] [PubMed] [Google Scholar]
  5. Cavalli-Sforza L. L., Edwards A. W. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet. 1967 May;19(3 Pt 1):233–257. [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R., Meagher T. R., Smouse P. E. Parentage analysis with genetic markers in natural populations. I. The expected proportion of offspring with unambiguous paternity. Genetics. 1988 Mar;118(3):527–536. doi: 10.1093/genetics/118.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth D., Schemske D. W., Sork V. L. The evolution of plant reproductive characters; sexual versus natural selection. Experientia Suppl. 1987;55:317–335. doi: 10.1007/978-3-0348-6273-8_14. [DOI] [PubMed] [Google Scholar]
  8. Elston R. C. Probability and paternity testing. Am J Hum Genet. 1986 Jul;39(1):112–122. [PMC free article] [PubMed] [Google Scholar]
  9. Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
  10. Hanken J., Sherman P. W. Multiple paternity in Belding's ground squirrel litters. Science. 1981 Apr 17;212(4492):351–353. doi: 10.1126/science.7209536. [DOI] [PubMed] [Google Scholar]
  11. Hill W. G. DNA fingerprints applied to animal and bird populations. Nature. 1987 May 14;327(6118):98–99. doi: 10.1038/327098a0. [DOI] [PubMed] [Google Scholar]
  12. Hughes C. R., Queller D. C. Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol Ecol. 1993 Jun;2(3):131–137. doi: 10.1111/j.1365-294x.1993.tb00102.x. [DOI] [PubMed] [Google Scholar]
  13. Jeffreys A. J., Morton D. B. DNA fingerprints of dogs and cats. Anim Genet. 1987;18(1):1–15. doi: 10.1111/j.1365-2052.1987.tb00739.x. [DOI] [PubMed] [Google Scholar]
  14. Jeffreys A. J., Wilson V., Thein S. L. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
  15. Jeffreys A. J., Wilson V., Thein S. L. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4;316(6023):76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
  16. Jeffreys A. J., Wilson V., Thein S. L., Weatherall D. J., Ponder B. A. DNA "fingerprints" and segregation analysis of multiple markers in human pedigrees. Am J Hum Genet. 1986 Jul;39(1):11–24. [PMC free article] [PubMed] [Google Scholar]
  17. Lewis P. O., Snow A. A. Deterministic paternity exclusion using RAPD markers. Mol Ecol. 1992 Oct;1(3):155–160. doi: 10.1111/j.1365-294x.1992.tb00171.x. [DOI] [PubMed] [Google Scholar]
  18. Li C. C., Chakravarti A. Basic fallacies in the formulation of the paternity index. Am J Hum Genet. 1985 Jul;37(4):809–818. [PMC free article] [PubMed] [Google Scholar]
  19. Lynch M. Estimation of relatedness by DNA fingerprinting. Mol Biol Evol. 1988 Sep;5(5):584–599. doi: 10.1093/oxfordjournals.molbev.a040518. [DOI] [PubMed] [Google Scholar]
  20. McCracken G. F., Bradbury J. W. Paternity and Genetic Heterogeneity in the Polygynous Bat, Phyllostomus hastatus. Science. 1977 Oct 21;198(4314):303–306. doi: 10.1126/science.198.4314.303. [DOI] [PubMed] [Google Scholar]
  21. Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987 Mar 27;235(4796):1616–1622. doi: 10.1126/science.3029872. [DOI] [PubMed] [Google Scholar]
  22. Smouse P. E., Chakraborty R. The use of restriction fragment length polymorphisms in paternity analysis. Am J Hum Genet. 1986 Jun;38(6):918–939. [PMC free article] [PubMed] [Google Scholar]
  23. Thompson E. A., Meagher T. R. Parental and sib likelihoods in genealogy reconstruction. Biometrics. 1987 Sep;43(3):585–600. [PubMed] [Google Scholar]
  24. Thompson E. A. The estimation of pairwise relationships. Ann Hum Genet. 1975 Oct;39(2):173–188. doi: 10.1111/j.1469-1809.1975.tb00120.x. [DOI] [PubMed] [Google Scholar]
  25. Valentin J. Paternity index and attribution of paternity. Hum Hered. 1984;34(4):255–257. doi: 10.1159/000153473. [DOI] [PubMed] [Google Scholar]
  26. Wetton J. H., Carter R. E., Parkin D. T., Walters D. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature. 1987 May 14;327(6118):147–149. doi: 10.1038/327147a0. [DOI] [PubMed] [Google Scholar]
  27. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES