Skip to main content
Genetics logoLink to Genetics
. 1994 Jan;136(1):403–416. doi: 10.1093/genetics/136.1.403

Statistical Approaches for Analyzing Mutational Spectra: Some Recommendations for Categorical Data

W W Piegorsch 1, A J Bailer 1
PMCID: PMC1205789  PMID: 8138174

Abstract

In studies examining the patterns or spectra of mutational damage, the primary variables of interest are expressed typically as discrete counts within defined categories of damage. Various statistical methods can be applied to test for heterogeneity among the observed spectra of different classes, treatment groups and/or doses of a mutagen. These are described and compared via computer simulations to determine which are most appropriate for practical use in the evaluation of spectral data. Our results suggest that selected, simple modifications of the usual Pearson X(2) statistic for contingency tables provide stable false positive error rates near the usual α = 0.05 level and also acceptable sensitivity to detect differences among spectra. Extensions to the problem of identifying individual differences within and among mutant spectra are noted.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams W. T., Skopek T. R. Statistical test for the comparison of samples from mutational spectra. J Mol Biol. 1987 Apr 5;194(3):391–396. doi: 10.1016/0022-2836(87)90669-3. [DOI] [PubMed] [Google Scholar]
  2. Benigni R., Palombo F., Dogliotti E. Multivariate statistical analysis of mutational spectra of alkylating agents. Mutat Res. 1992 May;267(1):77–88. doi: 10.1016/0027-5107(92)90112-f. [DOI] [PubMed] [Google Scholar]
  3. Cariello N. F., Keohavong P., Kat A. G., Thilly W. G. Molecular analysis of complex human cell populations: mutational spectra of MNNG and ICR-191. Mutat Res. 1990 Aug;231(2):165–176. doi: 10.1016/0027-5107(90)90023-w. [DOI] [PubMed] [Google Scholar]
  4. DeMarini D. M., Abu-Shakra A., Gupta R., Hendee L. J., Levine J. G. Molecular analysis of mutations induced by the intercalating agent ellipticine at the hisD3052 allele of Salmonella typhimurium TA98. Environ Mol Mutagen. 1992;20(1):12–18. doi: 10.1002/em.2850200104. [DOI] [PubMed] [Google Scholar]
  5. Foster P. L., Eisenstadt E., Cairns J. Random components in mutagenesis. Nature. 1982 Sep 23;299(5881):365–367. doi: 10.1038/299365a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lambert I. B., Gordon A. J., Glickman B. W., McCalla D. R. The influence of local DNA sequence and DNA repair background on the mutational specificity of 1-nitroso-8-nitropyrene in Escherichia coli: inferences for mutagenic mechanisms. Genetics. 1992 Dec;132(4):911–927. doi: 10.1093/genetics/132.4.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Roff D. A., Bentzen P. The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. Mol Biol Evol. 1989 Sep;6(5):539–545. doi: 10.1093/oxfordjournals.molbev.a040568. [DOI] [PubMed] [Google Scholar]
  8. Tindall K. R., Stein J., Hutchinson F. Changes in DNA base sequence induced by gamma-ray mutagenesis of lambda phage and prophage. Genetics. 1988 Apr;118(4):551–560. doi: 10.1093/genetics/118.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES