Skip to main content
Genetics logoLink to Genetics
. 1994 Jul;137(3):751–757. doi: 10.1093/genetics/137.3.751

Toxin-Deficient Mutants from a Toxin-Sensitive Transformant of Cochliobolus Heterostrophus

G Yang 1, B G Turgeon 1, O C Yoder 1
PMCID: PMC1206035  PMID: 8088521

Abstract

Tox1 is the only genetic element identified which controls production of T-toxin, a linear polyketide involved in the virulence of Cochliobolus heterostrophus to its host plant, corn. Previous attempts to induce toxin-deficient (Tox(-)) mutants, using conventional mutagenesis and screening procedures, have been unsuccessful. As a strategy to enrich for Tox(-) mutants, we constructed a Tox1(+) strain that carried the corn T-urf13 gene (which confers T-toxin sensitivity) fused to a fungal mitochondrial signal sequence; the fusion was under control of the inducible Aspergillus nidulans pelA promoter which, in both A. nidulans and C. heterostrophus, is repressed by glucose and induced by polygalacturonic acid (PGA). We expected that a transformant carrying this construction would be sensitive to its own toxin when the T-urf13 gene was expressed. Indeed, the strain grew normally on medium containing glucose but was inhibited on medium containing PGA. Conidia of this strain were treated with ethylmethanesulfonate and plated on PGA medium. Among 362 survivors, 9 were defective in T-toxin production. Authenticity of each mutant was established by the presence of the transformation vector, proper mating type, and a restiction fragment length polymorphism tightly linked to the Tox1(+) locus. Progeny of each mutant crossed to a Tox1(+) tester segregated 1:1 (for wild type toxin production vs. no or reduced toxin production), indicating a single gene mutation in each case. Progeny of each mutant crossed to a Tox1(-) tester segregated 1 : 1 (for no toxin production vs. no or reduced toxin production) indicating that each mutation mapped at the Tox1 locus. Availability of Tox(-) mutants will permit mapping in the Tox1 region without interference from a known Tox1 linked translocation breakpoint.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dean R. A., Timberlake W. E. Regulation of the Aspergillus nidulans pectate lyase gene (pelA). Plant Cell. 1989 Mar;1(3):275–284. doi: 10.1105/tpc.1.3.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dewey R. E., Siedow J. N., Timothy D. H., Levings C. S., 3rd A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science. 1988 Jan 15;239(4837):293–295. doi: 10.1126/science.3276005. [DOI] [PubMed] [Google Scholar]
  3. Huang J., Lee S. H., Lin C., Medici R., Hack E., Myers A. M. Expression in yeast of the T-urf13 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins. EMBO J. 1990 Feb;9(2):339–347. doi: 10.1002/j.1460-2075.1990.tb08116.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Klein R. R., Koeppe D. E. Mode of Methomyl and Bipolaris maydis (race T) Toxin in Uncoupling Texas Male-Sterile Cytoplasm Corn Mitochondria. Plant Physiol. 1985 Apr;77(4):912–916. doi: 10.1104/pp.77.4.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ma G. C., Käfer E. Genetic analysis of the reciprocal translocation T2(I;8) of Asperigillus using the technique of mitotic mapping in homozygous translocation diploids. Genetics. 1974 May;77(1):11–23. doi: 10.1093/genetics/77.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mönke E., Schäfer W. Transient and stable gene expression in the fungal maize pathogen Cochliobolus heterostrophus after transformation with the beta-glucuronidase (GUS) gene. Mol Gen Genet. 1993 Oct;241(1-2):73–80. doi: 10.1007/BF00280203. [DOI] [PubMed] [Google Scholar]
  7. Turgeon B. G., Bohlmann H., Ciuffetti L. M., Christiansen S. K., Yang G., Schäfer W., Yoder O. C. Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet. 1993 Apr;238(1-2):270–284. doi: 10.1007/BF00279556. [DOI] [PubMed] [Google Scholar]
  8. Turgeon B. G., Garber R. C., Yoder O. C. Development of a fungal transformation system based on selection of sequences with promoter activity. Mol Cell Biol. 1987 Sep;7(9):3297–3305. doi: 10.1128/mcb.7.9.3297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tzeng T. H., Lyngholm L. K., Ford C. F., Bronson C. R. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics. 1992 Jan;130(1):81–96. doi: 10.1093/genetics/130.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. von Allmen J. M., Rottmann W. H., Gengenbach B. G., Harvey A. J., Lonsdale D. M. Transfer of methomyl and HmT-toxin sensitivity from T-cytoplasm maize to tobacco. Mol Gen Genet. 1991 Oct;229(3):405–412. doi: 10.1007/BF00267463. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES