Skip to main content
Genetics logoLink to Genetics
. 1994 Nov;138(3):693–707. doi: 10.1093/genetics/138.3.693

Molecular Polymorphism in the Period Gene of Drosophila Simulans

E Rosato 1, A A Peixoto 1, G Barbujani 1, R Costa 1, C P Kyriacou 1
PMCID: PMC1206220  PMID: 7851767

Abstract

The threonine-glycine (Thr-Gly) repeat region of the period (per) gene of eight natural populations of Drosophila simulans from Europe and North Africa was analyzed by polymerase chain reaction, DNA sequencing and heteroduplex formation. Five different length alleles encoding 21, 23, 25 and two different kinds of 24 Thr-Gly pairs in the uninterrupted repeat were found. In the 3' region flanking the repeat 6 nucleotide substitutions (3 synonymous, 3 replacement) were observed in three different combinations that we called haplotypes I, II and III. The complete linkage disequilibrium observed between the haplotypes and these length variants allowed us to infer from the repeat length, the DNA sequence at the 3' polymorphic sites. The haplotypes were homogeneously distributed across Europe and North Africa. The data show statistically significant departures from neutral expectations according to the Tajima test. The results suggest that balancing selection might have played a role in determining the observed levels and patterns of genetic diversity at the per gene in D. simulans.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquadro C. F., Lado K. M., Noon W. A. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aquadro C. F. Why is the genome variable? Insights from Drosophila. Trends Genet. 1992 Oct;8(10):355–362. doi: 10.1016/0168-9525(92)90281-8. [DOI] [PubMed] [Google Scholar]
  3. Ashburner M. Drosophila genetics. Love-song and circadian rhythm. Nature. 1987 Apr 23;326(6115):741–741. doi: 10.1038/326741a0. [DOI] [PubMed] [Google Scholar]
  4. Begun D. J., Aquadro C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991 Dec;129(4):1147–1158. doi: 10.1093/genetics/129.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berry A., Kreitman M. Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics. 1993 Jul;134(3):869–893. doi: 10.1093/genetics/134.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Citri Y., Colot H. V., Jacquier A. C., Yu Q., Hall J. C., Baltimore D., Rosbash M. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature. 1987 Mar 5;326(6108):42–47. doi: 10.1038/326042a0. [DOI] [PubMed] [Google Scholar]
  7. Colot H. V., Hall J. C., Rosbash M. Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. EMBO J. 1988 Dec 1;7(12):3929–3937. doi: 10.1002/j.1460-2075.1988.tb03279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costa R., Peixoto A. A., Barbujani G., Kyriacou C. P. A latitudinal cline in a Drosophila clock gene. Proc Biol Sci. 1992 Oct 22;250(1327):43–49. doi: 10.1098/rspb.1992.0128. [DOI] [PubMed] [Google Scholar]
  9. Coyne J. A. Genetics and speciation. Nature. 1992 Feb 6;355(6360):511–515. doi: 10.1038/355511a0. [DOI] [PubMed] [Google Scholar]
  10. Ewer J., Hamblen-Coyle M., Rosbash M., Hall J. C. Requirement for period gene expression in the adult and not during development for locomotor activity rhythms of imaginal Drosophila melanogaster. J Neurogenet. 1990 Nov;7(1):31–73. doi: 10.3109/01677069009084151. [DOI] [PubMed] [Google Scholar]
  11. Excoffier L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J Mol Evol. 1990 Feb;30(2):125–139. doi: 10.1007/BF02099939. [DOI] [PubMed] [Google Scholar]
  12. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jeffreys A. J., Neumann R., Wilson V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell. 1990 Feb 9;60(3):473–485. doi: 10.1016/0092-8674(90)90598-9. [DOI] [PubMed] [Google Scholar]
  15. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  16. Kliman R. M., Hey J. DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics. 1993 Feb;133(2):375–387. doi: 10.1093/genetics/133.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112–2116. doi: 10.1073/pnas.68.9.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kyriacou C. P., Oldroyd M., Wood J., Sharp M., Hill M. Clock mutations alter developmental timing in Drosophila. Heredity (Edinb) 1990 Jun;64(Pt 3):395–401. doi: 10.1038/hdy.1990.50. [DOI] [PubMed] [Google Scholar]
  20. McClung C. R., Fox B. A., Dunlap J. C. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature. 1989 Jun 15;339(6225):558–562. doi: 10.1038/339558a0. [DOI] [PubMed] [Google Scholar]
  21. Miyashita N. T., Aguadé M., Langley C. H. Linkage disequilibrium in the white locus region of Drosophila melanogaster. Genet Res. 1993 Oct;62(2):101–109. doi: 10.1017/s0016672300031694. [DOI] [PubMed] [Google Scholar]
  22. Peixoto A. A., Campesan S., Costa R., Kyriacou C. P. Molecular evolution of a repetitive region within the per gene of Drosophila. Mol Biol Evol. 1993 Jan;10(1):127–139. doi: 10.1093/oxfordjournals.molbev.a039993. [DOI] [PubMed] [Google Scholar]
  23. Reddy P., Zehring W. A., Wheeler D. A., Pirrotta V., Hadfield C., Hall J. C., Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 1984 Oct;38(3):701–710. doi: 10.1016/0092-8674(84)90265-4. [DOI] [PubMed] [Google Scholar]
  24. Schaeffer S. W., Miller E. L. Estimates of linkage disequilibrium and the recombination parameter determined from segregating nucleotide sites in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1993 Oct;135(2):541–552. doi: 10.1093/genetics/135.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. doi: 10.1093/genetics/123.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thackeray J. R., Kyriacou C. P. Molecular evolution in the Drosophila yakuba period locus. J Mol Evol. 1990 Nov;31(5):389–401. doi: 10.1007/BF02106054. [DOI] [PubMed] [Google Scholar]
  28. Yu Q., Colot H. V., Kyriacou C. P., Hall J. C., Rosbash M. Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature. 1987 Apr 23;326(6115):765–769. doi: 10.1038/326765a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES