Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1964 Nov;93(2):349–363. doi: 10.1042/bj0930349

Structural and enzymic aspects of the hydrolysis of adenosine triphosphate by membranes of kidney cortex and erythrocytes

K P Wheeler 1, R Whittam 1
PMCID: PMC1206297  PMID: 4220934

Full text

PDF
353

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERS R. W., FAHN S., KOVAL G. J. THE ROLE OF SODIUM IONS IN THE ACTIVATION OF ELECTROPHORUS ELECTRIC ORGAN ADENOSINE TRIPHOSPHATASE. Proc Natl Acad Sci U S A. 1963 Sep;50:474–481. doi: 10.1073/pnas.50.3.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ALDRIDGE W. N. Adenosine triphosphatase in the microsomal fraction from rat brain. Biochem J. 1962 Jun;83:527–533. doi: 10.1042/bj0830527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ASHWORTH C. T., LUIBEL F. J., STEWART S. C. The fine structural localization of adenosine triphosphatase in the small intestine, kidney, and liver of the rat. J Cell Biol. 1963 Apr;17:1–18. doi: 10.1083/jcb.17.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. AUDITORE J. V., MURRAY L. Cardiac (microsomal) Na plus K adenosinetriphosphatase and its possible relationship to the active Na plus K transport system. Arch Biochem Biophys. 1962 Dec;99:372–382. doi: 10.1016/0003-9861(62)90282-5. [DOI] [PubMed] [Google Scholar]
  5. BAKER P. F. THE RELATIONSHIP BETWEEN PHOSPHORUS METABOLISM AND THE SODIUM PUMP IN INTACT CRAB NERVE. Biochim Biophys Acta. 1963 Sep 24;75:287–289. doi: 10.1016/0006-3002(63)90613-9. [DOI] [PubMed] [Google Scholar]
  6. BONTING S. L., CARAVAGGIO L. L., HAWKINS N. M. Studies on sodium-potassium-activated adenosinetriphosphatase. IV. Correlation with cation transport sensitive to cardiac glycosides. Arch Biochem Biophys. 1962 Sep;98:413–419. doi: 10.1016/0003-9861(62)90206-0. [DOI] [PubMed] [Google Scholar]
  7. BONTING S. L., SIMON K. A., HAWKINS N. M. Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat. Arch Biochem Biophys. 1961 Dec;95:416–423. doi: 10.1016/0003-9861(61)90170-9. [DOI] [PubMed] [Google Scholar]
  8. CHANCE B., ITO T. Control of endogenous adenosine triphosphatase activity by energy-linked pyridine nucleotide reduction in mitochondria. Nature. 1962 Jul 14;195:150–153. doi: 10.1038/195150a0. [DOI] [PubMed] [Google Scholar]
  9. CRANE R. K. Hypothesis for mechanism of intestinal active transport of sugars. Fed Proc. 1962 Nov-Dec;21:891–895. [PubMed] [Google Scholar]
  10. CRANE R. K. Intestinal absorption of sugars. Physiol Rev. 1960 Oct;40:789–825. doi: 10.1152/physrev.1960.40.4.789. [DOI] [PubMed] [Google Scholar]
  11. CSAKY T. Z., THALE M. Effect of ionic environment on intestinal sugar transport. J Physiol. 1960 Apr;151:59–65. [PMC free article] [PubMed] [Google Scholar]
  12. CUMMINS J., HYDEN H. Adenosine triphosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim Biophys Acta. 1962 Jul 2;60:271–283. doi: 10.1016/0006-3002(62)90403-1. [DOI] [PubMed] [Google Scholar]
  13. Cutting M., McCance R. A. The effect of calcium ions on the respiration of kidney slices of newborn and mature rats. J Physiol. 1947 Oct 15;106(4):405–410. doi: 10.1113/jphysiol.1947.sp004220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DEUL D. H., McILWAIN H. Activation and inhibition of adenosine triphosphatases of subcellular particles from the brain. J Neurochem. 1961 Dec;8:246–256. doi: 10.1111/j.1471-4159.1961.tb13550.x. [DOI] [PubMed] [Google Scholar]
  15. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. EMMELOT P., BOS C. J. Adenosine triphosphatase in the cell-membrane fraction from rat liver. Biochim Biophys Acta. 1962 Apr 9;58:374–375. doi: 10.1016/0006-3002(62)91031-4. [DOI] [PubMed] [Google Scholar]
  17. GLYNN I. M. TRANSPORT ADENOSINETRIPHOSPHATASE' IN ELECTRIC ORGAN. THE RELATION BETWEEN ION TRANSPORT AND OXIDATIVE PHOSPHORYLATION. J Physiol. 1963 Nov;169:452–465. doi: 10.1113/jphysiol.1963.sp007272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GOTH A., HOLMAN J., O'DELL V. Effect of mercurials on kidney adenosine triphosphatase activity. Proc Soc Exp Biol Med. 1950 May;74(1):178–180. doi: 10.3181/00379727-74-17846. [DOI] [PubMed] [Google Scholar]
  19. GUTFREUND H., HAMMOND B. R. Records of pH changes during enzyme reactions and kinetic studies with yeast hexokinase. Nature. 1963 May 18;198:667–670. doi: 10.1038/198667a0. [DOI] [PubMed] [Google Scholar]
  20. HUGHES D. E., NYBORG W. L. Cell disruption by ultrasound. Science. 1962 Oct 12;138(3537):108–114. doi: 10.1126/science.138.3537.108. [DOI] [PubMed] [Google Scholar]
  21. JARNEFELT J. Properties and possible mechanism of the Na ion and K ion stimulated microsomal adenosinetriphosphatase. Biochim Biophys Acta. 1962 Jun 4;59:643–654. doi: 10.1016/0006-3002(62)90644-3. [DOI] [PubMed] [Google Scholar]
  22. KARPMAN V. L., ABRIKOSOVA M. A., GLEZER G. A. Hydrodynamic mechanisms of arterial pressure rise in hypertensive disease. Fed Proc. 1963 Mar-Apr;Suppl 22:212–215. [PubMed] [Google Scholar]
  23. KLEINZELLER A., KOTYK A. Cations and transport of galactose in kidney-cortex slices. Biochim Biophys Acta. 1961 Dec 9;54:367–369. doi: 10.1016/0006-3002(61)90383-3. [DOI] [PubMed] [Google Scholar]
  24. KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
  25. LANDON E. J., NORRIS J. L. Sodium- and potassium-dependent adenosine triphosphatase activity in a rat-kidney endoplasmic reticulum fraction. Biochim Biophys Acta. 1963 May 14;71:266–276. doi: 10.1016/0006-3002(63)91081-3. [DOI] [PubMed] [Google Scholar]
  26. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  27. LEE K. S., YU D. H. A STUDY OF THE SODIUM- AND POTASSIUM-ACTIVATED ADENOSINETRIPHOSPHATASE ACTIVITY OF HEART MICROSOMAL FRACTION. Biochem Pharmacol. 1963 Nov;12:1253–1264. [PubMed] [Google Scholar]
  28. LOTSPEICH W. D. Phlorizin and the cellular transport of glucose. Harvey Lect. 1960;56:63–91. [PubMed] [Google Scholar]
  29. MOSKOWITZ M., DANDLIKER W. B., CALVIN M., EVANS R. S. Studies on the antigens of human red cells. I. The separation from human erythrocytes of a water soluble fraction containing the Rh, A and B factors. J Immunol. 1950 Oct;65(4):383–392. [PubMed] [Google Scholar]
  30. NEVILLE D. M., Jr The isolation of a cell membrane fraction from rat liver. J Biophys Biochem Cytol. 1960 Oct;8:413–422. doi: 10.1083/jcb.8.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. NISHIMURA M., ITO T., CHANCE B. Studies on bacterial photophosphorylation. III. A sensitive and rapid method of determination of photophosphorylation. Biochim Biophys Acta. 1962 May 7;59:177–182. [PubMed] [Google Scholar]
  32. NOVIKOFF A. B., DRUCKER J., SHIN W. Y., GOLDFISCHER S. Further studies of the apparent adenosinetriphosphatase activity of cell membranes in formol-calcium-fixed tissues. J Histochem Cytochem. 1961 Jul;9:434–451. doi: 10.1177/9.4.434. [DOI] [PubMed] [Google Scholar]
  33. PFLEGER K., RUMMEL W., SEIFEN E., BALDAUF J. The effect of g-strophanthin on potassium and sodium movements in human and rat erythrocytes. Med Exp Int J Exp Med. 1961;5:473–479. doi: 10.1159/000135123. [DOI] [PubMed] [Google Scholar]
  34. POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
  35. RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
  36. RIKLIS E., QUASTEL J. H. Effects of cations on sugar absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol. 1958 Mar;36(3):347–362. [PubMed] [Google Scholar]
  37. RIKLIS E., QUASTEL J. H. Effects of metabolic inhibitors on potassium-stimulated glucose absorption by isolated surviving guinea pig intestine. Can J Biochem Physiol. 1958 Mar;36(3):363–371. [PubMed] [Google Scholar]
  38. RUMMEL W., SEIFEN E., BALDAUF J. Influence of calcium and ouabain upon the potassium influx in human erythrocytes. Biochem Pharmacol. 1963 Jun;12:557–563. doi: 10.1016/0006-2952(63)90131-x. [DOI] [PubMed] [Google Scholar]
  39. Robinson J. R. Some effects of glucose and calcium upon the metabolism of kidney slices from adult and newborn rats. Biochem J. 1949;45(1):68–74. doi: 10.1042/bj0450068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. SCHWARTZ A. A sodium and potassium-stimulated adenosine triphosphatase from cardiac tissues. I. Preparation and properties. Biochem Biophys Res Commun. 1962 Oct 31;9:301–306. doi: 10.1016/0006-291x(62)90044-x. [DOI] [PubMed] [Google Scholar]
  41. SCHWARTZ A., BACHELARD H. S., McIL WAIN H. The sodium-stimulated adenosine-triphosphatase activity and other properties of cerebral microsomal fractions and subfractions. Biochem J. 1962 Sep;84:626–637. doi: 10.1042/bj0840626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
  43. SPATER H. W., NOVIKOFF A. B., MASEK B. Adenosinetriphosphatase activity in the cell membranes of kidney tubule cells. J Biophys Biochem Cytol. 1958 Nov 25;4(6):765–770. doi: 10.1083/jcb.4.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. TAYLOR C. B. Cation-stimulation of an ATPase system from the intestinal mucosa of the guinea-pig. Biochim Biophys Acta. 1962 Jul 2;60:437–440. doi: 10.1016/0006-3002(62)90429-8. [DOI] [PubMed] [Google Scholar]
  45. TAYLOR C. B. The effect of mercurial diuretics on adenosinetriphosphatase of rabbit kidney in vitro. Biochem Pharmacol. 1963 Jun;12:539–550. doi: 10.1016/0006-2952(63)90129-1. [DOI] [PubMed] [Google Scholar]
  46. TONOMURA Y., KITAGAWA S., YOSHIMURA J. The initial phase of myosin A-adenosinetriphosphatase and the possible phosphorylation of myosin A. J Biol Chem. 1962 Dec;237:3660–3666. [PubMed] [Google Scholar]
  47. UNGAR G., ROMANO D. V. Diffusion across rat diaphragm. I. Movement of sodium and potassium; effect of excitation and correlation with protein structure. Biochim Biophys Acta. 1963 Jan 15;66:110–117. doi: 10.1016/0006-3002(63)91172-7. [DOI] [PubMed] [Google Scholar]
  48. VAN GRONINGENH, SLATER E. C. THE EFFECT OF OLIGOMYCIN ON THE (NA+ + K+)-ACTIVATED MAGNESIUM ATPASE OF BRAIN MICROSOMES AND ERYTHROCYTE MEMBRANE. Biochim Biophys Acta. 1963 Jul 9;73:527–530. doi: 10.1016/0006-3002(63)90460-8. [DOI] [PubMed] [Google Scholar]
  49. WHEELER K. P., WHITTAM R. Fome properties of a kidney adenosine triphosphatase relevant to active cation transport. Biochem J. 1962 Dec;85:495–507. doi: 10.1042/bj0850495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. WHITTAM R. Active cation transport as a pace-maker of respiration. Nature. 1961 Aug 5;191:603–604. doi: 10.1038/191603a0. [DOI] [PubMed] [Google Scholar]
  51. WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. WHITTAM R. The dependence of the respiration of brain cortex on active cation transport. Biochem J. 1962 Jan;82:205–212. doi: 10.1042/bj0820205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Whittam R., Blond D. M. Respiratory control by an adenosine triphosphatase involved in active transport in brain cortex. Biochem J. 1964 Jul;92(1):147–158. doi: 10.1042/bj0920147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Whittam R., Blond D. M. Respiratory control by an adenosine triphosphatase involved in active transport in brain cortex. Biochem J. 1964 Jul;92(1):147–158. doi: 10.1042/bj0920147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. YOSHIDA H., FUJISAWA H. Influence of subcellular structures on the activity of Na ion, K ion-activated adenosine triphosphatase in brain. Biochim Biophys Acta. 1962 Jul 2;60:443–444. doi: 10.1016/0006-3002(62)90431-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES