Skip to main content
Genetics logoLink to Genetics
. 1995 Jun;140(2):537–548. doi: 10.1093/genetics/140.2.537

Competition between Mitochondrial Haplotypes in Distinct Nuclear Genetic Environments: Drosophila Pseudoobscura Vs. D. Persimilis

C M Hutter 1, D M Rand 1
PMCID: PMC1206633  PMID: 7498735

Abstract

A test for coadaptation of nuclear and mitochondrial genomes was performed using the sibling species, Drosophila pseudoobscura and D. persimilis. Two lines of flies with ``disrupted'' cytonuclear genotypes were constructed by repeated backcrossing of males from one species to females carrying mitochondrial DNA (mtDNA) from the other species. Each ``disrupted'' strain was competed in population cages with the original stock of each species from which the recurrent males were obtained during the backcrossing. As such, the two species' mitochondrial types were competed reciprocally in the nuclear genetic environments of each species. The trajectories of mtDNA haplotypes were followed in discrete-generation population cages using a PCR-four-cutter approach. A significant increase in the frequency of D. pseudoobscura mtDNA was observed in each of four replicate cages with a D. pseudoobscura nuclear background. In the D. persimilis nuclear background, one cage actually showed an increase in frequency of D. pseudoobscura mtDNA, although together the four replicate cages show little change in frequency. These results were repeated after frequency perturbations and reinitiation of each cage. An analysis of fitness components revealed that fertility selection greatly outweighed viability selection in these cytonuclear competition experiments. The asymmetry of the fitnesses of the mtDNA haplotypes on the two genetic backgrounds is consistent in direction with the previously reported asymmetry of female fertility in backcrosses between these two species. While our experiments do not allow us to identify mtDNA as the sole source of fitness variation, at a minimum the data indicate a fitness association between nuclear fertility factors and the D. pseudoobscura mtDNA on its own genetic background.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  2. Ballard J. W., Kreitman M. Unraveling selection in the mitochondrial genome of Drosophila. Genetics. 1994 Nov;138(3):757–772. doi: 10.1093/genetics/138.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coyne J. A. Lack of genic similarity between two sibling species of drosophila as revealed by varied techniques. Genetics. 1976 Nov;84(3):593–607. doi: 10.1093/genetics/84.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ding D., Whittaker K. L., Lipshitz H. D. Mitochondrially encoded 16S large ribosomal RNA is concentrated in the posterior polar plasm of early Drosophila embryos but is not required for pole cell formation. Dev Biol. 1994 Jun;163(2):503–515. doi: 10.1006/dbio.1994.1166. [DOI] [PubMed] [Google Scholar]
  5. Dykhuizen D., Hartl D. L. Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics. 1980 Dec;96(4):801–817. doi: 10.1093/genetics/96.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Excoffier L. Evolution of human mitochondrial DNA: evidence for departure from a pure neutral model of populations at equilibrium. J Mol Evol. 1990 Feb;30(2):125–139. doi: 10.1007/BF02099939. [DOI] [PubMed] [Google Scholar]
  7. Fos M., Domínguez M. A., Latorre A., Moya A. Mitochondrial DNA evolution in experimental populations of Drosophila subobscura. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4198–4201. doi: 10.1073/pnas.87.11.4198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gray M. W. The evolutionary origins of organelles. Trends Genet. 1989 Sep;5(9):294–299. doi: 10.1016/0168-9525(89)90111-x. [DOI] [PubMed] [Google Scholar]
  9. Gregorius H. R., Ross M. D. Selection with gene-cytoplasm interactions. I. Maintenance of cytoplasm polymorphisms. Genetics. 1984 May;107(1):165–178. doi: 10.1093/genetics/107.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hale L. R., Beckenbach A. T. Mitochondrial DNA variation in Drosophila pseudoobscura and related species in Pacific northwest populations. Can J Genet Cytol. 1985 Jun;27(3):357–364. doi: 10.1139/g85-053. [DOI] [PubMed] [Google Scholar]
  11. Kambhampati S., Rai K. S., Verleye D. M. Frequencies of mitochondrial DNA haplotypes in laboratory cage populations of the mosquito, Aedes albopictus. Genetics. 1992 Sep;132(1):205–209. doi: 10.1093/genetics/132.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kobayashi S., Amikura R., Okada M. Presence of mitochondrial large ribosomal RNA outside mitochondria in germ plasm of Drosophila melanogaster. Science. 1993 Jun 4;260(5113):1521–1524. doi: 10.1126/science.7684857. [DOI] [PubMed] [Google Scholar]
  13. Kobayashi S., Okada M. Restoration of pole-cell-forming ability to u.v.-irradiated Drosophila embryos by injection of mitochondrial lrRNA. Development. 1989 Dec;107(4):733–742. doi: 10.1242/dev.107.4.733. [DOI] [PubMed] [Google Scholar]
  14. MacRae A. F., Anderson W. W. Can mating preferences explain changes in mtDNA haplotype frequencies? Genetics. 1990 Apr;124(4):999–1001. doi: 10.1093/genetics/124.4.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacRae A. F., Anderson W. W. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics. 1988 Oct;120(2):485–494. doi: 10.1093/genetics/120.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mahowald A. P. Polar granules of Drosophila. II. Ultrastructural changes during early embryogenesis. J Exp Zool. 1968 Feb;167(2):237–261. doi: 10.1002/jez.1401670211. [DOI] [PubMed] [Google Scholar]
  17. Montchamp-Moreau C., Ferveur J. F., Jacques M. Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics. 1991 Oct;129(2):399–407. doi: 10.1093/genetics/129.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nachman M. W., Boyer S. N., Aquadro C. F. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6364–6368. doi: 10.1073/pnas.91.14.6364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nigro L., Prout T. Is there selection on RFLP differences in mitochondrial DNA? Genetics. 1990 Jul;125(3):551–555. doi: 10.1093/genetics/125.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Niki Y., Chigusa S. I., Matsuura E. T. Complete replacement of mitochondrial DNA in Drosophila. Nature. 1989 Oct 12;341(6242):551–552. doi: 10.1038/341551a0. [DOI] [PubMed] [Google Scholar]
  21. Orr H. A. Genetics of male and female sterility in hybrids of Drosophila pseudoobscura and D. persimilis. Genetics. 1987 Aug;116(4):555–563. doi: 10.1093/genetics/116.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Popadić A., Anderson W. W. The history of a genetic system. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6819–6823. doi: 10.1073/pnas.91.15.6819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Powell J. R. Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence from Drosophila. Proc Natl Acad Sci U S A. 1983 Jan;80(2):492–495. doi: 10.1073/pnas.80.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rand D. M., Dorfsman M., Kann L. M. Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics. 1994 Nov;138(3):741–756. doi: 10.1093/genetics/138.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schaeffer S. W., Miller E. L. Molecular population genetics of an electrophoretically monomorphic protein in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics. 1992 Sep;132(1):163–178. doi: 10.1093/genetics/132.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schaffer H. E., Yardley D., Anderson W. W. Drift or Selection: A Statistical Test of Gene Frequency Variation over Generations. Genetics. 1977 Oct;87(2):371–379. doi: 10.1093/genetics/87.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Singh R. S., Hale L. R. Are mitochondrial DNA variants selectively non-neutral? Genetics. 1990 Apr;124(4):995–997. doi: 10.1093/genetics/124.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Solignac M., Monnerot M., Mounolou J. C. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J Mol Evol. 1986;23(1):31–40. doi: 10.1007/BF02100996. [DOI] [PubMed] [Google Scholar]
  29. Tan C C. Salivary Gland Chromosomes in the Two Races of Drosophila Pseudoobscura. Genetics. 1935 Jul;20(4):392–402. doi: 10.1093/genetics/20.4.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wallace D. C., Zheng X. X., Lott M. T., Shoffner J. M., Hodge J. A., Kelley R. I., Epstein C. M., Hopkins L. C. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988 Nov 18;55(4):601–610. doi: 10.1016/0092-8674(88)90218-8. [DOI] [PubMed] [Google Scholar]
  31. Whittam T. S., Clark A. G., Stoneking M., Cann R. L., Wilson A. C. Allelic variation in human mitochondrial genes based on patterns of restriction site polymorphism. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9611–9615. doi: 10.1073/pnas.83.24.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson S. R. Analyzing gene-frequency data when the effective population size is finite. Genetics. 1980 Jun;95(2):489–502. doi: 10.1093/genetics/95.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. de Stordeur E., Solignac M., Monnerot M., Mounolou J. C. The generation of transplasmic Drosophila simulans by cytoplasmic injection: effects of segregation and selection on the perpetuation of mitochondrial DNA heteroplasmy. Mol Gen Genet. 1989 Dec;220(1):127–132. doi: 10.1007/BF00260866. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES