Skip to main content
Genetics logoLink to Genetics
. 1995 Aug;140(4):1167–1174. doi: 10.1093/genetics/140.4.1167

Host and φx 174 Mutations Affecting the Morphogenesis or Stabilization of the 50s Complex, a Single-Stranded DNA Synthesizing Intermediate

M C Ekechukwu 1, D J Oberste 1, B A Fane 1
PMCID: PMC1206684  PMID: 7498760

Abstract

The morphogenetic pathway of bacteriophage φX 174 was investigated in rep mutant hosts that specifically block stage III single-stranded DNA synthesis. The defects conferred by the mutant rep protein most likely affect the formation or stabilization of the 50S complex, a single-stranded DNA synthesizing intermediate, which consists of a viral prohead and a DNA replicating intermediate (preinitiation complex). φX 174 mutants, ogr(rep), which restore the ability to propagate in the mutant rep hosts, were isolated. The ogr(rep) mutations confer amino acid substitutions in the viral coat protein, a constituent of the prohead, and the viral A protein, a constituent of the preinitiation complex. Four of the six coat protein substitutions are localized on or near the twofold axis of symmetry in the atomic structure of the mature virion.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eisenberg S., Kornberg A. Purification and characterization of phiX174 gene A protein. A multifunctional enzyme of duplex DNA replication. J Biol Chem. 1979 Jun 25;254(12):5328–5332. [PubMed] [Google Scholar]
  2. Ekechukwu M. C., Fane B. A. Characterization of the morphogenetic defects conferred by cold-sensitive prohead accessory and scaffolding proteins of phi X174. J Bacteriol. 1995 Feb;177(3):829–830. doi: 10.1128/jb.177.3.829-830.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fane B. A., Hayashi M. Second-site suppressors of a cold-sensitive prohead accessory protein of bacteriophage phi X174. Genetics. 1991 Aug;128(4):663–671. doi: 10.1093/genetics/128.4.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fane B. A., Head S., Hayashi M. Functional relationship between the J proteins of bacteriophages phi X174 and G4 during phage morphogenesis. J Bacteriol. 1992 Apr;174(8):2717–2719. doi: 10.1128/jb.174.8.2717-2719.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fane B. A., Shien S., Hayashi M. Second-site suppressors of a cold-sensitive external scaffolding protein of bacteriophage phi X174. Genetics. 1993 Aug;134(4):1003–1011. doi: 10.1093/genetics/134.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Francke B., Ray D. S. Formation of the parental replicative form DNA of bacteriophage phi-X174 and initial events in its replication. J Mol Biol. 1971 Nov 14;61(3):565–586. doi: 10.1016/0022-2836(71)90065-9. [DOI] [PubMed] [Google Scholar]
  7. Fujisawa H., Hayashi M. Viral DNA-synthesizing intermediate complex isolated during assembly of bacteriophage phi X174. J Virol. 1976 Aug;19(2):409–415. doi: 10.1128/jvi.19.2.409-415.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ilag L. L., Olson N. H., Dokland T., Music C. L., Cheng R. H., Bowen Z., McKenna R., Rossmann M. G., Baker T. S., Incardona N. L. DNA packaging intermediates of bacteriophage phi X174. Structure. 1995 Apr 15;3(4):353–363. doi: 10.1016/s0969-2126(01)00167-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kim S., Boege U., Krishnaswamy S., Minor I., Smith T. J., Luo M., Scraba D. G., Rossmann M. G. Conformational variability of a picornavirus capsid: pH-dependent structural changes of Mengo virus related to its host receptor attachment site and disassembly. Virology. 1990 Mar;175(1):176–190. doi: 10.1016/0042-6822(90)90198-z. [DOI] [PubMed] [Google Scholar]
  10. Lau P. C., Spencer J. H. Nucleotide sequence and genome organization of bacteriophage S13 DNA. Gene. 1985;40(2-3):273–284. doi: 10.1016/0378-1119(85)90050-2. [DOI] [PubMed] [Google Scholar]
  11. McKenna R., Ilag L. L., Rossmann M. G. Analysis of the single-stranded DNA bacteriophage phi X174, refined at a resolution of 3.0 A. J Mol Biol. 1994 Apr 15;237(5):517–543. doi: 10.1006/jmbi.1994.1253. [DOI] [PubMed] [Google Scholar]
  12. McKenna R., Xia D., Willingmann P., Ilag L. L., Krishnaswamy S., Rossmann M. G., Olson N. H., Baker T. S., Incardona N. L. Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature. 1992 Jan 9;355(6356):137–143. doi: 10.1038/355137a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mukai R., Hamatake R. K., Hayashi M. Isolation and identification of bacteriophage phi X174 prohead. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4877–4881. doi: 10.1073/pnas.76.10.4877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanger F., Coulson A. R., Friedmann T., Air G. M., Barrell B. G., Brown N. L., Fiddes J. C., Hutchison C. A., 3rd, Slocombe P. M., Smith M. The nucleotide sequence of bacteriophage phiX174. J Mol Biol. 1978 Oct 25;125(2):225–246. doi: 10.1016/0022-2836(78)90346-7. [DOI] [PubMed] [Google Scholar]
  15. Tessman E. S., Peterson P. K. Bacterial rep- mutations that block development of small DNA bacteriophages late in infection. J Virol. 1976 Nov;20(2):400–412. doi: 10.1128/jvi.20.2.400-412.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES