Abstract
This paper presents an extension of the finite polygenic mixed model of FERNANDO et al. (1994) to linkage analysis. The finite polygenic mixed model, extended for linkage analysis, leads to a likelihood that can be calculated using efficient algorithms developed for oligogenic models. For comparison, linkage analysis of 5 simulated 4021-member pedigrees was performed using the usual mixed model of inheritance, approximated by HASSTEDT (1982), and the finite polygenic mixed model extended for linkage analysis presented here. Maximum likelihood estimates of the finite polygenic mixed model could be inferred to be closer to the simulated values in these pedigrees.
Full Text
The Full Text of this article is available as a PDF (574.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beever J. E., George P. D., Fernando R. L., Stormont C. J., Lewin H. A. Associations between genetic markers and growth and carcass traits in a paternal half-sib family of Angus cattle. J Anim Sci. 1990 Feb;68(2):337–344. doi: 10.2527/1990.682337x. [DOI] [PubMed] [Google Scholar]
- Bonney G. E. Compound regressive models for family data. Hum Hered. 1992;42(1):28–41. doi: 10.1159/000154044. [DOI] [PubMed] [Google Scholar]
- Bonney G. E. On the statistical determination of major gene mechanisms in continuous human traits: regressive models. Am J Med Genet. 1984 Aug;18(4):731–749. doi: 10.1002/ajmg.1320180420. [DOI] [PubMed] [Google Scholar]
- Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
- Goradia T. M., Lange K., Miller P. L., Nadkarni P. M. Fast computation of genetic likelihoods on human pedigree data. Hum Hered. 1992;42(1):42–62. doi: 10.1159/000154045. [DOI] [PubMed] [Google Scholar]
- Guo S. W., Thompson E. A. A Monte Carlo method for combined segregation and linkage analysis. Am J Hum Genet. 1992 Nov;51(5):1111–1126. [PMC free article] [PubMed] [Google Scholar]
- Hasstedt S. J. A mixed-model likelihood approximation on large pedigrees. Comput Biomed Res. 1982 Jun;15(3):295–307. doi: 10.1016/0010-4809(82)90064-7. [DOI] [PubMed] [Google Scholar]
- Hoeschele I., Meinert T. R. Association of genetic defects with yield and type traits: the weaver locus effect on yield. J Dairy Sci. 1990 Sep;73(9):2503–2515. doi: 10.3168/jds.S0022-0302(90)78936-9. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange K., Boehnke M. Extensions to pedigree analysis. V. Optimal calculation of Mendelian likelihoods. Hum Hered. 1983;33(5):291–301. doi: 10.1159/000153393. [DOI] [PubMed] [Google Scholar]
- Lange K., Elston R. C. Extensions to pedigree analysis I. Likehood calculations for simple and complex pedigrees. Hum Hered. 1975;25(2):95–105. doi: 10.1159/000152714. [DOI] [PubMed] [Google Scholar]
- Morton N. E., MacLean C. J. Analysis of family resemblance. 3. Complex segregation of quantitative traits. Am J Hum Genet. 1974 Jul;26(4):489–503. [PMC free article] [PubMed] [Google Scholar]
- Weller J. I., Soller M., Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato (lycopersicon esculentum x lycopersicon pimpinellifolium) by means of genetic markers. Genetics. 1988 Feb;118(2):329–339. doi: 10.1093/genetics/118.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]