Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Aug;96(2):539–551. doi: 10.1042/bj0960539

The isolation and properties of epithelial-cell `ghosts' from rat small intestine

B Clark 1,*, J W Porteous 1
PMCID: PMC1207073  PMID: 4220968

Abstract

1. The preparation of gram quantities of isolated epithelial-cell `ghosts' from mucosal scrapings of rat small intestine is described. The method involves dispersing the tissue by gentle homogenization in 6% dextran in Krebs–Ringer phosphate, pH7·4, followed by filtration through nylon cloth and sedimentation by low-speed centrifuging. 2. The isolated epithelial-cell `ghosts' contained all of the DNA, but only 52% of the protein and 53–57% of the RNA of the original homogenate. They contained most of the activity of the following enzymes found in the homogenate: aminopeptidase (71%); alkaline β-glycerophosphatase (82%); invertase (92%); adenosine triphosphatase (93–116%); acid β-glycerophosphatase (83%); nonspecific esterase (76%); succinate dehydrogenase (96%). Only small proportions of the total lactate-dehydrogenase (10%) and phosphoglucose-isomerase (2%) activities found in the homogenate were recovered in the isolated cell `ghosts'. 3. The epithelial-cell `ghost' preparation did not respire unless cofactors and substrates were added, and did not consume glucose or produce lactic acid from glucose. 4. The effect of varying the composition of the homogenization medium was studied. Concentrations of dextran (mol.wt. 15×104) from 1 to 12%, solutions of dextrans (all at 6%) with mol.wt. varying between 3·6×104 and 2×106, and a solution of 8% polyethylene glycol (mol.wt. 4000) served equally well for the production of epithelial-cell `ghosts'. Two of these solutions, however, 12% dextran (mol.wt.15×104) and 6% dextran (mol.wt. 2×106), were too viscous to allow the complete sedimentation of the cell `ghosts' at low relative centrifugal forces. Omission of either Krebs–Ringer phosphate or dextran from the medium resulted in almost complete cell breakage during the homogenization. 5. The isolated cell `ghosts' were used as a starting material for subcellular fractionation of rat intestinal mucosa by differential centrifugation. The distributions of protein and succinate-dehydrogenase activity among the fractions were compared with corresponding values in fractions isolated by differential centrifugation of mucosa homogenized in 0·3m-sucrose–5mm-EDTA, pH7·4. The method in which cell `ghosts' were used as starting material gave a better separation and cleaner fractions than the method in which untreated mucosal scrapings were used.

Full text

PDF
547

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERG B., BLOOM W. L., HANSSON E. Gastro-intestinal excretion of dextran-C14. Acta Physiol Scand. 1961 Jun;52:188–194. doi: 10.1111/j.1748-1716.1961.tb02217.x. [DOI] [PubMed] [Google Scholar]
  2. AILHAUD G., SAMUEL D., DESNUELLE P. [Subcellular localization of acyl-CoA synthetase from intestinal mucosa]. Biochim Biophys Acta. 1963 Jan 8;67:150–152. doi: 10.1016/0006-3002(63)91806-7. [DOI] [PubMed] [Google Scholar]
  3. ALLARD C., DE LAMIRANDE G., CANTERO A. Enzymes and cytological studies in rat hepatoma transplants, primary liver tumors, and in liver following azo dye feeding or partial hepatectomy. Cancer Res. 1957 Oct;17(9):862–879. [PubMed] [Google Scholar]
  4. ANDERSON N. G. The mass isolation of whole cells from rat liver. Science. 1953 Jun 5;117(3049):627–628. doi: 10.1126/science.117.3049.627. [DOI] [PubMed] [Google Scholar]
  5. APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ASHWORTH C. T., LUIBEL F. J., STEWART S. C. The fine structural localization of adenosine triphosphatase in the small intestine, kidney, and liver of the rat. J Cell Biol. 1963 Apr;17:1–18. doi: 10.1083/jcb.17.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BEAUFAY H., DE DUVE C., HOLT S. J., UNDERHAY E. Intracellular localization of esterase in rat liver. J Biophys Biochem Cytol. 1956 Sep 25;2(5):635–637. doi: 10.1083/jcb.2.5.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. BIRBECK M. S., REID E. Development of an improved medium for the isolation of liver mitochondria. J Biophys Biochem Cytol. 1956 Sep 25;2(5):609–624. doi: 10.1083/jcb.2.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. BRANSTER M. V., MORTON R. K. Isolation of intact liver cells. Nature. 1957 Dec 7;180(4597):1283–1284. doi: 10.1038/1801283a0. [DOI] [PubMed] [Google Scholar]
  10. BUSCH H., DAVIS J. R., ANDERSON D. C. Labeling of histones and other nuclear proteins with L-lysine-U-C14 in tissues of tumor-bearing rats. Cancer Res. 1958 Sep;18(8 Pt 1):916–926. [PubMed] [Google Scholar]
  11. CARNIE J. A., PORTEOUS J. W. The solubilization, thermolability, chromatographic purification and intracellular distribution of some glycosidases of rabbit small intestine. Biochem J. 1962 Dec;85:620–629. doi: 10.1042/bj0850620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. CLARK B., PORTEOUS J. W. THE METAL ION ACTIVATION OF THE ALKALINE BETA-GLYCEROPHOSPHATASE OF RABBIT SMALL INTESTINE. Biochem J. 1965 May;95:475–482. doi: 10.1042/bj0950475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. CRANE R. K., MANDELSTAM P. The active transport of sugars by various preparations of hamster intestine. Biochim Biophys Acta. 1960 Dec 18;45:460–476. doi: 10.1016/0006-3002(60)91482-7. [DOI] [PubMed] [Google Scholar]
  14. CRANE R. K., WILSON T. H. In vitro method for the study of the rate of intestinal absorption of sugars. J Appl Physiol. 1958 Jan;12(1):145–146. doi: 10.1152/jappl.1958.12.1.145. [DOI] [PubMed] [Google Scholar]
  15. DALTON A. J., FELIX M. D. Studies on the Golgi substance of the epithelial cells of the epididymis and duodenum of the mouse. Am J Anat. 1953 Mar;92(2):277–305. doi: 10.1002/aja.1000920204. [DOI] [PubMed] [Google Scholar]
  16. DARLINGTON W. A., QUASTEL J. H. Absorption of sugars from isolated surviving intestine. Arch Biochem Biophys. 1953 Mar;43(1):194–207. doi: 10.1016/0003-9861(53)90099-x. [DOI] [PubMed] [Google Scholar]
  17. DINELLA R. R., MENG H. C., PARK C. R. Properties of intestinal lipase. J Biol Chem. 1960 Nov;235:3076–3081. [PubMed] [Google Scholar]
  18. DOELL R. G., KRETCHMER N. Studies of small intestine during development. I. Distribution and activity of beta-galactosidase. Biochim Biophys Acta. 1962 Aug 13;62:353–362. doi: 10.1016/0006-3002(62)90097-5. [DOI] [PubMed] [Google Scholar]
  19. DOELL R. G., KRETCHMER N. Studies of small intestine during development. II. The intracellular location of intestinal beta-galactosidase. Biochim Biophys Acta. 1963 Mar 12;67:516–519. doi: 10.1016/0006-3002(63)91860-2. [DOI] [PubMed] [Google Scholar]
  20. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dickens F., Weil-Malherbe H. Metabolism of normal and tumour tissue: The metabolism of intestinal mucous membrane. Biochem J. 1941 Jan;35(1-2):7–15. doi: 10.1042/bj0350007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Exton J. H. Metabolism of rat-liver cell suspensions. 1. General properties of isolated cells and occurrence of the citric acid cycle. Biochem J. 1964 Sep;92(3):457–467. doi: 10.1042/bj0920457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. FISHER R. B., PARSONS D. S. A preparation of surviving rat small intestine for the study of absorption. J Physiol. 1949 Dec 15;110(1-2):36-46, pl. doi: 10.1113/jphysiol.1949.sp004419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. GLOVER J., STAINER D. W. Sterol metabolism. 4. The absorption of 7-dehydrocholesterol in the rat. Biochem J. 1959 May;72(1):79–82. doi: 10.1042/bj0720079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. HARRER D. S., STERN B. K., REILLY R. W. REMOVAL AND DISSOCIATION OF EPITHELIAL CELLS FROM THE RODENT GASTROINTESTINAL TRACT. Nature. 1964 Jul 18;203:319–320. doi: 10.1038/203319a0. [DOI] [PubMed] [Google Scholar]
  26. HELMREICH E., EISEN H. N. The distribution and utilization of glucose in isolated lymph node cells. J Biol Chem. 1959 Aug;234(8):1958–1965. [PubMed] [Google Scholar]
  27. HENLEY K. S., SORENSEN O., POLLARD H. M. Some enzymatic properties of suspensions of parenchymatous liver cells. Nature. 1959 Oct 31;184(Suppl 18):1400–1400. doi: 10.1038/1841400a0. [DOI] [PubMed] [Google Scholar]
  28. KALANT H., YOUNG F. G. Metabolic behaviour of isolated liver and kidney cells. Nature. 1957 Apr 20;179(4564):816–817. doi: 10.1038/179816a0. [DOI] [PubMed] [Google Scholar]
  29. KALTENBACH J. P. The preparation and utilization of whole cell suspensions obtained from solid mammalian tissues. Exp Cell Res. 1954 Nov;7(2):568–571. doi: 10.1016/s0014-4827(54)80101-7. [DOI] [PubMed] [Google Scholar]
  30. King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LATA G. F., REINERTSON J. Cholesterol synthesis by isolated rat liver cells. Nature. 1957 Jan 5;179(4549):47–48. doi: 10.1038/179047a0. [DOI] [PubMed] [Google Scholar]
  32. LAWS J. O., STRICKLAND L. H. Metabolism of isolated liver cells. Nature. 1956 Aug 11;178(4528):309–310. doi: 10.1038/178309a0. [DOI] [PubMed] [Google Scholar]
  33. MILLER D., CRANE R. K. The digestive function of the epithelium of the small intestine. I. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis. Biochim Biophys Acta. 1961 Sep 16;52:281–293. doi: 10.1016/0006-3002(61)90677-1. [DOI] [PubMed] [Google Scholar]
  34. PADYKULA H. A., STRAUSS E. W., LADMAN A. J., GARDNER F. H. A morphologic and histochemical analysis of the human jejunal epithelium in nontropical sprue. Gastroenterology. 1961 Jun;40:735–765. [PubMed] [Google Scholar]
  35. PORTEOUS J. W., CLARK B. THE ISOLATION AND CHARACTERIZATION OF SUBCELLULAR COMPONENTS OF THE EPITHELIAL CELLS OF RABBIT SMALL INTESTINE. Biochem J. 1965 Jul;96:159–171. doi: 10.1042/bj0960159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. ROBINSON G. B. The distribution of peptidases in subcellular fractions from the mucosa of the small intestine of the rat. Biochem J. 1963 Jul;88:162–168. doi: 10.1042/bj0880162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  38. SCHOTZ M. C., RICE L. I., ALFIN-SLATER R. B. The investigation of a cholesterol esterase in rat liver. J Biol Chem. 1954 Apr;207(2):665–670. [PubMed] [Google Scholar]
  39. SHERRATT H. S., HUBSCHER G. Properties of mitochondrial preparations from the small-intestinal mucosa of the guinea-pig. Biochim Biophys Acta. 1963 Feb 5;69:403–405. doi: 10.1016/0006-3002(63)91274-5. [DOI] [PubMed] [Google Scholar]
  40. ST AUBIN P. M. G., BUCHER N. L. A study of binucleate cell counts in resting and regenerating rat liver employing a mechanical method for the separation of liver cells. Anat Rec. 1952 Apr;112(4):797–809. doi: 10.1002/ar.1091120406. [DOI] [PubMed] [Google Scholar]
  41. TAYLOR C. B. The effect of cetyltrimethylammonium bromide and some related compounds on transport and metabolism in the intestine of the rat in vitro. J Physiol. 1963 Feb;165:199–218. doi: 10.1113/jphysiol.1963.sp007052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. UVNAS B., THON I. L. Isolation of "biologically intact" mast cells. Exp Cell Res. 1959 Nov;18:512–520. doi: 10.1016/0014-4827(59)90316-7. [DOI] [PubMed] [Google Scholar]
  43. WALDER A. I., LUNSETH J. B. A technic for separation of the cells of the gastric mucosa. Proc Soc Exp Biol Med. 1963 Feb;112:494–496. doi: 10.3181/00379727-112-28086. [DOI] [PubMed] [Google Scholar]
  44. WILSON T. H., WISEMAN G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954 Jan;123(1):116–125. doi: 10.1113/jphysiol.1954.sp005036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. WISEMAN G. Absorption of amino-acids using an in vitro technique. J Physiol. 1953 Apr 28;120(1-2):63–72. doi: 10.1113/jphysiol.1953.sp004873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. ZIMMERMAN M., DEVLIN T. M., PRUSS M. P. Anaerobic glycolysis of dispersed cell suspensions from normal and malignant tissues. Nature. 1960 Jan 30;185:315–316. doi: 10.1038/185315a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES