Skip to main content
Genetics logoLink to Genetics
. 1996 Apr;142(4):1265–1276. doi: 10.1093/genetics/142.4.1265

Production of Androgenetic Zebrafish (Danio Rerio)

G E Corley-Smith 1, C J Lim 1, B P Brandhorst 1
PMCID: PMC1207123  PMID: 8846903

Abstract

To help investigate the evolutionary origin of the imprinting (parent-of-origin mono-allelic expression) of paternal genes observed in mammals, we constructed haploid and diploid androgenetic zebrafish (Danio rerio). Haploid androgenotes were produced by fertilizing eggs that had been X-ray irradiated to eliminate the maternal genome. Subsequent inhibition of the first mitotic division of haploid androgenotes by heat shock produced diploid androgenotes. The lack of inheritance of maternal-specific DNA markers (RAPD and SSR) by putative diploid and haploid androgenotes confirmed the androgenetic origin of their genomes. Marker analysis was performed on 18 putative androgenotes (five diploids and 13 haploids) from six families. None of 157 maternal-specific RAPD markers analyzed, some of which were apparently homozygous, were passed on to any of these putative androgenotes. A mean of 7.7 maternal-specific markers were assessed per family. The survival of androgenetic zebrafish suggests that if paternal imprinting occurs in zebrafish, it does not result in essential genes being inactivated when their expression is required for development. Production of haploid androgenotes can be used to determine the meiotic recombination rate in male zebrafish. Androgenesis may also provide useful information about the mechanism of sex determination in zebrafish.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey G. S., Cocks G. T., Wilson A. C. Gene duplication in fishes: malate dehydrogenases of salmon and trout. Biochem Biophys Res Commun. 1969 Mar 10;34(5):605–612. doi: 10.1016/0006-291x(69)90781-5. [DOI] [PubMed] [Google Scholar]
  2. Barinaga M. Zebrafish: swimming into the development mainstream. Science. 1990 Oct 5;250(4977):34–35. doi: 10.1126/science.2218513. [DOI] [PubMed] [Google Scholar]
  3. Barra J., Renard J. P. Diploid mouse embryos constructed at the late 2-cell stage from haploid parthenotes and androgenotes can develop to term. Development. 1988 Apr;102(4):773–779. doi: 10.1242/dev.102.4.773. [DOI] [PubMed] [Google Scholar]
  4. Driever W., Stemple D., Schier A., Solnica-Krezel L. Zebrafish: genetic tools for studying vertebrate development. Trends Genet. 1994 May;10(5):152–159. doi: 10.1016/0168-9525(94)90091-4. [DOI] [PubMed] [Google Scholar]
  5. Gibbs P. D., Peek A., Thorgaard G. An in vivo screen for the luciferase transgene in zebrafish. Mol Mar Biol Biotechnol. 1994 Dec;3(6):307–316. [PubMed] [Google Scholar]
  6. Gillespie L. L., Armstrong J. B. Suppression of first cleavage in the Mexican axolotl (Ambystoma mexicanum) by heat shock or hydrostatic pressure. J Exp Zool. 1981 Dec;218(3):441–445. doi: 10.1002/jez.1402180316. [DOI] [PubMed] [Google Scholar]
  7. Kahn P. Zebrafish hit the big time. Science. 1994 May 13;264(5161):904–905. doi: 10.1126/science.8178149. [DOI] [PubMed] [Google Scholar]
  8. Klose J., Wolf U., Hitzeroth H., Ritter H. Duplication of the LDH gene loci by polyploidization in the fish order Clupeiformes. Humangenetik. 1968;5(3):190–196. doi: 10.1007/BF00281954. [DOI] [PubMed] [Google Scholar]
  9. Martin C. C., McGowan R. Genotype-specific modifiers of transgene methylation and expression in the zebrafish, Danio rerio. Genet Res. 1995 Feb;65(1):21–28. doi: 10.1017/s0016672300032973. [DOI] [PubMed] [Google Scholar]
  10. Meyer A., Biermann C. H., Ortí G. The phylogenetic position of the zebrafish (Danio rerio), a model system in developmental biology: an invitation to the comparative method. Proc Biol Sci. 1993 Jun 22;252(1335):231–236. doi: 10.1098/rspb.1993.0070. [DOI] [PubMed] [Google Scholar]
  11. Ohlsson R., Barlow D., Surani A. Impressions of imprints. Trends Genet. 1994 Dec;10(12):415–417. doi: 10.1016/0168-9525(94)90100-7. [DOI] [PubMed] [Google Scholar]
  12. Parsons J. E., Thorgaard G. H. Production of androgenetic diploid rainbow trout. J Hered. 1985 May-Jun;76(3):177–181. doi: 10.1093/oxfordjournals.jhered.a110060. [DOI] [PubMed] [Google Scholar]
  13. Postlethwait J. H., Johnson S. L., Midson C. N., Talbot W. S., Gates M., Ballinger E. W., Africa D., Andrews R., Carl T., Eisen J. S. A genetic linkage map for the zebrafish. Science. 1994 Apr 29;264(5159):699–703. doi: 10.1126/science.8171321. [DOI] [PubMed] [Google Scholar]
  14. Renard J. P., Babinet C., Barra J. Participation of the paternal genome is not required before the eight-cell stage for full-term development of mouse embryos. Dev Biol. 1991 Jan;143(1):199–202. doi: 10.1016/0012-1606(91)90066-c. [DOI] [PubMed] [Google Scholar]
  15. Sapienza C. Sex-linked dosage-sensitive modifiers as imprinting genes. Dev Suppl. 1990:107–113. [PubMed] [Google Scholar]
  16. Surani M. A., Barton S. C., Norris M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature. 1984 Apr 5;308(5959):548–550. doi: 10.1038/308548a0. [DOI] [PubMed] [Google Scholar]
  17. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES