Skip to main content
Genetics logoLink to Genetics
. 1996 May;143(1):203–212. doi: 10.1093/genetics/143.1.203

Change of Genetic Architecture in Response to Sex

H W Deng 1, M Lynch 1
PMCID: PMC1207254  PMID: 8722775

Abstract

A traditional view is that sexual reproduction increases the potential for phenotypic evolution by expanding the range of genetic variation upon which natural selection can act. However, when nonadditive genetic effects and genetic disequilibria underlie a genetic system, genetic slippage (a change in the mean genotypic value contrary to that promoted by selection) in response to sex may occur. Additionally, depending on whether natural selection is predominantly stabilizing or disruptive, recombination may either enhance or reduce the level of expressed genetic variance. Thus, the role of sexual reproduction in the dynamics of phenotypic evolution depends heavily upon the nature of natural selection and the genetic system of the study population. In the present study, on a permanent lake Daphnia pulicaria population, sexual reproduction resulted in significant genetic slippage and a significant increase in expressed genetic variance for several traits. These observations provide evidence for substantial genetic disequilibria and nonadditive genetic effects underlying the genetic system of the study population. From these results, the fitness function of the previous clonal selection phase is inferred to be directional and/or stabilizing. The data are also used to infer the effects of natural selection on the mean and the genetic variance of the population.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker J. S. Inter-locus interactions: a review of experimental evidence. Theor Popul Biol. 1979 Dec;16(3):323–346. doi: 10.1016/0040-5809(79)90021-2. [DOI] [PubMed] [Google Scholar]
  2. Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
  3. Bryant E. H., McCommas S. A., Combs L. M. The Effect of an Experimental Bottleneck upon Quantitative Genetic Variation in the Housefly. Genetics. 1986 Dec;114(4):1191–1211. doi: 10.1093/genetics/114.4.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bürger R. Predictions of the dynamics of a polygenic character under directional selection. J Theor Biol. 1993 Jun 21;162(4):487–513. doi: 10.1006/jtbi.1993.1101. [DOI] [PubMed] [Google Scholar]
  5. Chao L. Evolution of sex in RNA viruses. J Theor Biol. 1988 Jul 8;133(1):99–112. doi: 10.1016/s0022-5193(88)80027-4. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth B., Charlesworth D. An experimental on recombination load in Drosophila melanogaster. Genet Res. 1975 Jun;25(3):267–274. doi: 10.1017/s001667230001569x. [DOI] [PubMed] [Google Scholar]
  7. Charlesworth B. Directional selection and the evolution of sex and recombination. Genet Res. 1993 Jun;61(3):205–224. doi: 10.1017/s0016672300031372. [DOI] [PubMed] [Google Scholar]
  8. Charlesworth B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res. 1990 Jun;55(3):199–221. doi: 10.1017/s0016672300025532. [DOI] [PubMed] [Google Scholar]
  9. Cheverud J. M., Routman E. J. Epistasis and its contribution to genetic variance components. Genetics. 1995 Mar;139(3):1455–1461. doi: 10.1093/genetics/139.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cockerham C. C., Tachida H. Permanency of response to selection for quantitative characters in finite populations. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1563–1565. doi: 10.1073/pnas.85.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dobzhansky T, Levene H, Spassky B, Spassky N. Release of Genetic Variability through Recombination. III. Drosophila Prosaltans. Genetics. 1959 Jan;44(1):75–92. doi: 10.1093/genetics/44.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gavrilets S., Hastings A. Dynamics of genetic variability in two-locus models of stabilizing selection. Genetics. 1994 Oct;138(2):519–532. doi: 10.1093/genetics/138.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gavrilets S., Hastings A. Maintenance of genetic variability under strong stabilizing selection: a two-locus model. Genetics. 1993 May;134(1):377–386. doi: 10.1093/genetics/134.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houle D. Allozyme-associated heterosis in Drosophila melanogaster. Genetics. 1989 Dec;123(4):789–801. doi: 10.1093/genetics/123.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  16. Lande R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet Res. 1975 Dec;26(3):221–235. doi: 10.1017/s0016672300016037. [DOI] [PubMed] [Google Scholar]
  17. Lewontin R. C. Population genetics. Annu Rev Genet. 1985;19:81–102. doi: 10.1146/annurev.ge.19.120185.000501. [DOI] [PubMed] [Google Scholar]
  18. Lynch M. The rate of polygenic mutation. Genet Res. 1988 Apr;51(2):137–148. doi: 10.1017/s0016672300024150. [DOI] [PubMed] [Google Scholar]
  19. Mukai T. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. VII Synergistic Interaction of Spontaneous Mutant Polygenes Controlling Viability. Genetics. 1969 Mar;61(3):749–761. doi: 10.1093/genetics/61.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robertson A. The Effect of Inbreeding on the Variation Due to Recessive Genes. Genetics. 1952 Mar;37(2):189–207. doi: 10.1093/genetics/37.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smit-McBride Z., Moya A., Ayala F. J. Linkage disequilibrium in natural and experimental populations of Drosophila melanogaster. Genetics. 1988 Dec;120(4):1043–1051. doi: 10.1093/genetics/120.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tachida H., Cockerham C. C. Effects of identity disequilibrium and linkage on quantitative variation in finite populations. Genet Res. 1989 Feb;53(1):63–70. doi: 10.1017/s0016672300027877. [DOI] [PubMed] [Google Scholar]
  23. Zapata C., Alvarez G. On the detection of nonrandom associations between DNA polymorphisms in natural populations of Drosophila. Mol Biol Evol. 1993 Jul;10(4):823–841. doi: 10.1093/oxfordjournals.molbev.a040045. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES