Abstract
Restriction fragment length polymorphism mapping data from nine populations (Glycine max X G. soja and G. max X G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes.
Full Text
The Full Text of this article is available as a PDF (964.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn S., Anderson J. A., Sorrells M. E., Tanksley S. D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet. 1993 Dec;241(5-6):483–490. doi: 10.1007/BF00279889. [DOI] [PubMed] [Google Scholar]
- Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonierbale M. W., Plaisted R. L., Tanksley S. D. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics. 1988 Dec;120(4):1095–1103. doi: 10.1093/genetics/120.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helentjaris T. Implications for conserved genomic structure among plant species. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8308–8309. doi: 10.1073/pnas.90.18.8308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keim P., Diers B. W., Olson T. C., Shoemaker R. C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990 Nov;126(3):735–742. doi: 10.1093/genetics/126.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- Lee J. S., Verma D. P. Structure and chromosomal arrangement of leghemoglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization. EMBO J. 1984 Dec 1;3(12):2745–2752. doi: 10.1002/j.1460-2075.1984.tb02205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin Y. R., Schertz K. F., Paterson A. H. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics. 1995 Sep;141(1):391–411. doi: 10.1093/genetics/141.1.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundin L. G. Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics. 1993 Apr;16(1):1–19. doi: 10.1006/geno.1993.1133. [DOI] [PubMed] [Google Scholar]
- Nielsen N. C., Dickinson C. D., Cho T. J., Thanh V. H., Scallon B. J., Fischer R. L., Sims T. L., Drews G. N., Goldberg R. B. Characterization of the glycinin gene family in soybean. Plant Cell. 1989 Mar;1(3):313–328. doi: 10.1105/tpc.1.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pickett F. B., Meeks-Wagner D. R. Seeing double: appreciating genetic redundancy. Plant Cell. 1995 Sep;7(9):1347–1356. doi: 10.1105/tpc.7.9.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinisch A. J., Dong J. M., Brubaker C. L., Stelly D. M., Wendel J. F., Paterson A. H. A detailed RFLP map of cotton, Gossypium hirsutum x Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics. 1994 Nov;138(3):829–847. doi: 10.1093/genetics/138.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song K., Lu P., Tang K., Osborn T. C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7719–7723. doi: 10.1073/pnas.92.17.7719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Springer P. S., Edwards K. J., Bennetzen J. L. DNA class organization on maize Adh1 yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):863–867. doi: 10.1073/pnas.91.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanksley S. D., Bernatzky R., Lapitan N. L., Prince J. P. Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6419–6423. doi: 10.1073/pnas.85.17.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wadsworth G. J., Redinbaugh M. G., Scandalios J. G. A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal Biochem. 1988 Jul;172(1):279–283. doi: 10.1016/0003-2697(88)90443-5. [DOI] [PubMed] [Google Scholar]
- Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]