Skip to main content
Genetics logoLink to Genetics
. 1996 Dec;144(4):1961–1974. doi: 10.1093/genetics/144.4.1961

Selection Response in Finite Populations

M Wei 1, A Caballero 1, W G Hill 1
PMCID: PMC1207743  PMID: 8978079

Abstract

Formulae were derived to predict genetic response under various selection schemes assuming an infinitesimal model. Account was taken of genetic drift, gametic (linkage) disequilibrium (Bulmer effect), inbreeding depression, common environmental variance, and both initial segregating variance within families (σ(AW0)(2)) and mutational (σ(M)(2)) variance. The cumulative response to selection until generation t(CR(t)) can be approximated as & where N(e) is the effective population size, σ(AW &)(2) = N(e)σ(M)(2) is the genetic variance within families at the steady state (or one-half the genic variance, which is unaffected by selection), and D is the inbreeding depression per unit of inbreeding. R(0) is the selection response at generation 0 assuming preselection so that the linkage disequilibrium effect has stabilized. β is the derivative of the logarithm of the asymptotic response with respect to the logarithm of the within-family genetic variance, i.e., their relative rate of change. R(0) is the major determinant of the short term selection response, but σ(M)(2), N(e) and β are also important for the long term. A selection method of high accuracy using family information gives a small N(e) and will lead to a larger response in the short term and a smaller response in the long term, utilizing mutation less efficiently.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson R. P., Young J. F., Palese P. Oligonucleotide mapping: evaluation of its sensitivity by computer-simulation. Nucleic Acids Res. 1982 Jan 11;10(1):237–246. doi: 10.1093/nar/10.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Belonsky G. M., Kennedy B. W. Selection on individual phenotype and best linear unbiased predictor of breeding value in a closed swine herd. J Anim Sci. 1988 May;66(5):1124–1131. doi: 10.2527/jas1988.6651124x. [DOI] [PubMed] [Google Scholar]
  3. Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
  4. Caballero A., Keightley P. D. A pleiotropic nonadditive model of variation in quantitative traits. Genetics. 1994 Nov;138(3):883–900. doi: 10.1093/genetics/138.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caballero A., Keightley P. D., Hill W. G. Accumulation of mutations affecting body weight in inbred mouse lines. Genet Res. 1995 Apr;65(2):145–149. doi: 10.1017/s0016672300033152. [DOI] [PubMed] [Google Scholar]
  6. Campistol J. M., Solé M., Muñoz-Gómez J., Riba J., Ramón R., Revert L. Pathological fractures in patients who have amyloidosis associated with dialysis. A report of five cases. J Bone Joint Surg Am. 1990 Apr;72(4):568–574. [PubMed] [Google Scholar]
  7. Cockerham C. C., Tachida H. Evolution and maintenance of quantitative genetic variation by mutations. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6205–6209. doi: 10.1073/pnas.84.17.6205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dempfle L. A note on increasing the limit of selection through selection within families. Genet Res. 1974 Oct;24(2):127–135. doi: 10.1017/s0016672300015160. [DOI] [PubMed] [Google Scholar]
  9. Dopazo J., Sobrino F., López-Galíndez C. Estimates by computer simulation of genetic distances from comparisons of RNAse A mismatch cleavage patterns. J Virol Methods. 1993 Nov;45(1):73–82. doi: 10.1016/0166-0934(93)90141-d. [DOI] [PubMed] [Google Scholar]
  10. Erlich H. A., Arnheim N. Genetic analysis using the polymerase chain reaction. Annu Rev Genet. 1992;26:479–506. doi: 10.1146/annurev.ge.26.120192.002403. [DOI] [PubMed] [Google Scholar]
  11. Forrester K., Almoguera C., Han K., Grizzle W. E., Perucho M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. 1987 May 28-Jun 3Nature. 327(6120):298–303. doi: 10.1038/327298a0. [DOI] [PubMed] [Google Scholar]
  12. Heath S. C., Bulfield G., Thompson R., Keightley P. D. Rates of change of genetic parameters of body weight in selected mouse lines. Genet Res. 1995 Aug;66(1):19–25. doi: 10.1017/s0016672300034352. [DOI] [PubMed] [Google Scholar]
  13. Henderson C. R. Best linear unbiased estimation and prediction under a selection model. Biometrics. 1975 Jun;31(2):423–447. [PubMed] [Google Scholar]
  14. Hill W. G. Order statistics of correlated variables and implications in genetic selection programmes. Biometrics. 1976 Dec;32(4):889–902. [PubMed] [Google Scholar]
  15. Hill W. G. Predictions of response to artificial selection from new mutations. Genet Res. 1982 Dec;40(3):255–278. doi: 10.1017/s0016672300019145. [DOI] [PubMed] [Google Scholar]
  16. Keightley P. D., Hill W. G. Directional selection and variation in finite populations. Genetics. 1987 Nov;117(3):573–582. doi: 10.1093/genetics/117.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Latter B. D. Selection for a threshold character in Drosophila. II. Homeostatic behaviour on relaxation of selection. Genet Res. 1966 Oct;8(2):205–218. doi: 10.1017/s0016672300010065. [DOI] [PubMed] [Google Scholar]
  18. Lopez-Galindez C., Lopez J. A., Melero J. A., de la Fuente L., Martinez C., Ortin J., Perucho M. Analysis of genetic variability and mapping of point mutations in influenza virus by the RNase A mismatch cleavage method. Proc Natl Acad Sci U S A. 1988 May;85(10):3522–3526. doi: 10.1073/pnas.85.10.3522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. López-Galíndez C., Rojas J. M., Nájera R., Richman D. D., Perucho M. Characterization of genetic variation and 3'-azido-3'-deoxythymidine- resistance mutations of human immunodeficiency virus by the RNase A mismatch cleavage method. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4280–4284. doi: 10.1073/pnas.88.10.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meuwissen T. H. Reduction of selection differentials in finite populations with a nested full-half sib family structure. Biometrics. 1991 Mar;47(1):195–203. [PubMed] [Google Scholar]
  22. Myers R. M., Larin Z., Maniatis T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science. 1985 Dec 13;230(4731):1242–1246. doi: 10.1126/science.4071043. [DOI] [PubMed] [Google Scholar]
  23. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Owen J., Palukaitis P. Characterization of cucumber mosaic virus. I. Molecular heterogeneity mapping of RNA 3 in eight CMV strains. Virology. 1988 Oct;166(2):495–502. doi: 10.1016/0042-6822(88)90520-x. [DOI] [PubMed] [Google Scholar]
  25. Quinton M., Smith C., Goddard M. E. Comparison of selection methods at the same level of inbreeding. J Anim Sci. 1992 Apr;70(4):1060–1067. doi: 10.2527/1992.7041060x. [DOI] [PubMed] [Google Scholar]
  26. Rojas J. M., Dopazo J., Santana M., López-Galíndez C., Tabarés E. Comparative study of the genetic variability in thymidine kinase and glycoprotein B genes of herpes simplex viruses by the RNase A mismatch cleavage method. Virus Res. 1995 Feb;35(2):205–214. doi: 10.1016/0168-1702(94)00097-v. [DOI] [PubMed] [Google Scholar]
  27. Santiago E., Caballero A. Effective size of populations under selection. Genetics. 1995 Feb;139(2):1013–1030. doi: 10.1093/genetics/139.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sánchez-Palomino S., Dopazo J., Olivares I., Martin M. J., López-Galíndez C. Primary genetic characterization of HIV-1 isolates from WHO-sponsored vaccine evaluation sites by the RNase-A mismatch method. Virus Res. 1995 Dec;39(2-3):251–259. doi: 10.1016/0168-1702(95)00096-8. [DOI] [PubMed] [Google Scholar]
  29. Winter E., Yamamoto F., Almoguera C., Perucho M. A method to detect and characterize point mutations in transcribed genes: amplification and overexpression of the mutant c-Ki-ras allele in human tumor cells. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7575–7579. doi: 10.1073/pnas.82.22.7575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wray N. R., Thompson R. Prediction of rates of inbreeding in selected populations. Genet Res. 1990 Feb;55(1):41–54. doi: 10.1017/s0016672300025180. [DOI] [PubMed] [Google Scholar]
  31. Zeng Z. B., Hill W. G. The selection limit due to the conflict between truncation and stabilizing selection with mutation. Genetics. 1986 Dec;114(4):1313–1328. doi: 10.1093/genetics/114.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES