Skip to main content
Genetics logoLink to Genetics
. 1997 Mar;145(3):833–846. doi: 10.1093/genetics/145.3.833

A Coalescent Estimator of the Population Recombination Rate

J Hey 1, J Wakeley 1
PMCID: PMC1207867  PMID: 9055092

Abstract

Population genetic models often use a population recombination parameter 4Nc, where N is the effective population size and c is the recombination rate per generation. In many ways 4Nc is comparable to 4Nu, the population mutation rate. Both combine genome level and population level processes, and together they describe the rate of production of genetic variation in a population. However, 4Nc is more difficult to estimate. For a population sample of DNA sequences, historical recombination can only be detected if polymorphisms exist, and even then most recombination events are not detectable. This paper describes an estimator of 4Nc, hereafter designated γ (gamma), that was developed using a coalescent model for a sample of four DNA sequences with recombination. The reliability of γ was assessed using multiple coalescent simulations. In general γ has low to moderate bias, and the reliability of γ is comparable, though less, than that for a widely used estimator of 4Nu. If there exists an independent estimate of the recombination rate (per generation, per base pair), γ can be used to estimate the effective population size or the neutral mutation rate.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fullerton S. M., Harding R. M., Boyce A. J., Clegg J. B. Molecular and population genetic analysis of allelic sequence diversity at the human beta-globin locus. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1805–1809. doi: 10.1073/pnas.91.5.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hey J. A multi-dimensional coalescent process applied to multi-allelic selection models and migration models. Theor Popul Biol. 1991 Feb;39(1):30–48. doi: 10.1016/0040-5809(91)90039-i. [DOI] [PubMed] [Google Scholar]
  3. Hilliker A. J., Harauz G., Reaume A. G., Gray M., Clark S. H., Chovnick A. Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics. 1994 Aug;137(4):1019–1026. doi: 10.1093/genetics/137.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
  5. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudson R. R. Properties of a neutral allele model with intragenic recombination. Theor Popul Biol. 1983 Apr;23(2):183–201. doi: 10.1016/0040-5809(83)90013-8. [DOI] [PubMed] [Google Scholar]
  8. Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirby D. A., Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1483–1490. doi: 10.1093/genetics/141.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuhner M. K., Yamato J., Felsenstein J. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics. 1995 Aug;140(4):1421–1430. doi: 10.1093/genetics/140.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKane M., Milkman R. Transduction, restriction and recombination patterns in Escherichia coli. Genetics. 1995 Jan;139(1):35–43. doi: 10.1093/genetics/139.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stephens J. C. Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol Biol Evol. 1985 Nov;2(6):539–556. doi: 10.1093/oxfordjournals.molbev.a040371. [DOI] [PubMed] [Google Scholar]
  13. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. doi: 10.1093/genetics/123.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tajima F. The effect of change in population size on DNA polymorphism. Genetics. 1989 Nov;123(3):597–601. doi: 10.1093/genetics/123.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vigilant L., Stoneking M., Harpending H., Hawkes K., Wilson A. C. African populations and the evolution of human mitochondrial DNA. Science. 1991 Sep 27;253(5027):1503–1507. doi: 10.1126/science.1840702. [DOI] [PubMed] [Google Scholar]
  17. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES