Skip to main content
Genetics logoLink to Genetics
. 1997 Apr;145(4):1093–1108. doi: 10.1093/genetics/145.4.1093

Impact of Migration and Fitness on the Stability of Lethal T-Haplotype Polymorphism in Mus Musculus: A Computer Study

D Durand 1, K Ardlie 1, L Buttel 1, S A Levin 1, L M Silver 1
PMCID: PMC1207879  PMID: 9093861

Abstract

The t-haplotype is a chromosomal region in Mus musculus characterized by meiotic drive such that heterozygous males transmit t-bearing chromosomes to roughly 90% of their offspring. Most naturally occurring t-haplotypes express a recessive embryonic lethality, preventing fixation of the t-haplotype. Surprisingly, the t-haplotype occurs in nature as a persistent, low-frequency polymorphism. Early modeling studies led LEWONTIN to hypothesize that this low level polymorphism results from a balance between genetic drift in small demes and interdemic migration. Here, we show that while combinations of deme size and migration rate that predict natural t-haplotype frequencies exist, the range of such values is too narrow to be biologically plausible, suggesting that small deme size and interdemic migration alone do not explain the observed t-haplotype frequencies. In response, we tested other factors that might explain the observed t-polymorphism. Two led to biologically plausible models: substantially reduced heterozygous fitness and reduced meiotic drive. This raises the question whether these phenomena occur in nature. Our data suggest an alternative explanation: there is no stable, low-level t-polymorphism. Rather wild populations are in one of two stable states characterized by extinction of the t-haplotype and a high t-haplotype frequency, respectively, or in transition between the two.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON P. K. LETHAL ALLELES IN MUS MUSCULUS: LOCAL DISTRIBUTION AND EVIDENCE FOR ISOLATION OF DEMES. Science. 1964 Jul 10;145(3628):177–178. doi: 10.1126/science.145.3628.177. [DOI] [PubMed] [Google Scholar]
  2. Ardlie K. G., Silver L. M. Low frequency of mouse t haplotypes in wild populations is not explained by modifiers of meiotic drive. Genetics. 1996 Dec;144(4):1787–1797. doi: 10.1093/genetics/144.4.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruck D. MALE SEGREGATION RATIO ADVANTAGE AS A FACTOR IN MAINTAINING LETHAL ALLELES IN WILD POPULATIONS OF HOUSE MICE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):152–158. doi: 10.1073/pnas.43.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth B., Hartl D. L. Population Dynamics of the Segregation Distorter Polymorphism of DROSOPHILA MELANOGASTER. Genetics. 1978 May;89(1):171–192. doi: 10.1093/genetics/89.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
  6. Crow J. F. The ultraselfish gene. Genetics. 1988 Mar;118(3):389–391. doi: 10.1093/genetics/118.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunn L. C. EVIDENCE OF EVOLUTIONARY FORCES LEADING TO THE SPREAD OF LETHAL GENES IN WILD POPULATIONS OF HOUSE MICE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):158–163. doi: 10.1073/pnas.43.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Figueroa F., Golubić M., Nizetić D., Klein J. Evolution of mouse major histocompatibility complex genes borne by t chromosomes. Proc Natl Acad Sci U S A. 1985 May;82(9):2819–2823. doi: 10.1073/pnas.82.9.2819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lenington S., Egid K., Williams J. Analysis of a genetic recognition system in wild house mice. Behav Genet. 1988 Jul;18(4):549–564. doi: 10.1007/BF01065521. [DOI] [PubMed] [Google Scholar]
  10. Levin S. A., Durrett R. From individuals to epidemics. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1615–1621. doi: 10.1098/rstb.1996.0145. [DOI] [PubMed] [Google Scholar]
  11. Lewontin R C, Dunn L C. The Evolutionary Dynamics of a Polymorphism in the House Mouse. Genetics. 1960 Jun;45(6):705–722. doi: 10.1093/genetics/45.6.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Manning C. J., Wakeland E. K., Potts W. K. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature. 1992 Dec 10;360(6404):581–583. doi: 10.1038/360581a0. [DOI] [PubMed] [Google Scholar]
  13. Padieu E., Bernet J. Mode d'action des gènes responsables de l'avortement de certains produits de la méisoe chez l'Ascomycète Podospora anserina. C R Acad Sci Hebd Seances Acad Sci D. 1967 May 8;264(19):2300–2303. [PubMed] [Google Scholar]
  14. Petras M. L., Topping J. C. The maintenance of polymorphisms at two loci in house mouse (Mus musculus) populations. Can J Genet Cytol. 1983 Apr;25(2):190–201. doi: 10.1139/g83-032. [DOI] [PubMed] [Google Scholar]
  15. Rick C. M. The tomato ge locus: linkage relations and geographic distribution of alleles. Genetics. 1971 Jan;67(1):75–85. doi: 10.1093/genetics/67.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ruvinsky A., Polyakov A., Agulnik A., Tichy H., Figueroa F., Klein J. Low diversity of t haplotypes in the eastern form of the house mouse, Mus musculus L. Genetics. 1991 Jan;127(1):161–168. doi: 10.1093/genetics/127.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turner B. C., Perkins D. D. Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics. 1979 Nov;93(3):587–606. doi: 10.1093/genetics/93.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES